ZZFeatureMap
class ZZFeatureMap(feature_dimension, reps=2, entanglement='full', data_map_func=None, insert_barriers=False)
Second-order Pauli-Z evolution circuit.
For 3 qubits and 1 repetition and linear entanglement the circuit is represented by:
┌───┐┌─────────────────┐
┤ H ├┤ U1(2.0*φ(x[0])) ├──■────────────────────────────■────────────────────────────────────
├───┤├─────────────────┤┌─┴─┐┌──────────────────────┐┌─┴─┐
┤ H ├┤ U1(2.0*φ(x[1])) ├┤ X ├┤ U1(2.0*φ(x[0],x[1])) ├┤ X ├──■────────────────────────────■──
├───┤├─────────────────┤└───┘└──────────────────────┘└───┘┌─┴─┐┌──────────────────────┐┌─┴─┐
┤ H ├┤ U1(2.0*φ(x[2])) ├──────────────────────────────────┤ X ├┤ U1(2.0*φ(x[1],x[2])) ├┤ X ├
└───┘└─────────────────┘ └───┘└──────────────────────┘└───┘
where φ
is a classical non-linear function, which defaults to φ(x) = x
if and φ(x,y) = (pi - x)(pi - y)
.
Examples
>>> prep = ZZFeatureMap(2, reps=2)
>>> print(prep)
┌───┐┌──────────────┐
q_0: ┤ H ├┤ U1(2.0*x[0]) ├──■───────────────────────────────────────■──
├───┤├──────────────┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐
q_1: ┤ H ├┤ U1(2.0*x[1]) ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├
└───┘└──────────────┘└───┘└─────────────────────────────────┘└───┘
>>> from qiskit.circuit.library import EfficientSU2
>>> classifier = ZZFeatureMap(3) + EfficientSU2(3)
>>> classifier.num_parameters
15
>>> classifier.parameters # 'x' for the data preparation, 'θ' for the SU2 parameters
{Parameter(θ[9]), Parameter(θ[4]), Parameter(θ[6]), Parameter(θ[1]), Parameter(x[2]),
Parameter(θ[7]), Parameter(x[1]), Parameter(θ[8]), Parameter(θ[2]), Parameter(θ[10]),
Parameter(θ[5]), Parameter(θ[0]), Parameter(θ[3]), Parameter(x[0]), Parameter(θ[11])}
>>> classifier.count_ops()
OrderedDict([('u1', 12), ('cx', 12), ('ry', 12), ('cz', 9), ('h', 6)])
Create a new second-order Pauli-Z expansion.
Parameters
- feature_dimension (
int
) – Number of features. - reps (
int
) – The number of repeated circuits, has a min. value of 1. - entanglement (
Union
[str
,List
[List
[int
]],Callable
[[int
],List
[int
]]]) – Specifies the entanglement structure. Refer toNLocal
for detail. - data_map_func (
Optional
[Callable
[[ndarray
],float
]]) – A mapping function for data x. - insert_barriers (
bool
) – If True, barriers are inserted in between the evolution instructions and hadamard layers.
Attributes
clbits
Returns a list of classical bits in the order that the registers were added.
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the tuples for the circuit’s data.
Each tuple is in the format (instruction, qargs, cargs)
, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.
Return type
QuantumCircuitData
entanglement
Type: Union[str, List[str], List[List[str]], List[int], List[List[int]], List[List[List[int]]], List[List[List[List[int]]]], Callable[[int], str], Callable[[int], List[List[int]]]]
Get the entanglement strategy.
Return type
Union
[str
, List
[str
], List
[List
[str
]], List
[int
], List
[List
[int
]], List
[List
[List
[int
]]], List
[List
[List
[List
[int
]]]], Callable
[[int
], str
], Callable
[[int
], List
[List
[int
]]]]
Returns
The entanglement strategy, see get_entangler_map()
for more detail on how the format is interpreted.
entanglement_blocks
The blocks in the entanglement layers.
Returns
The blocks in the entanglement layers.
extension_lib
Default value: 'include "qelib1.inc";'
feature_dimension
Type: int
Returns the feature dimension (which is equal to the number of qubits).
Return type
int
Returns
The feature dimension of this feature map.
header
Default value: 'OPENQASM 2.0;'
initial_state
Type: Any
Return the initial state that is added in front of the n-local circuit.
Return type
Any
Returns
The initial state.
insert_barriers
Type: bool
If barriers are inserted in between the layers or not.
Return type
bool
Returns
True, if barriers are inserted in between the layers, False if not.
instances
Default value: 8
n_qubits
Deprecated, use num_qubits
instead. Return number of qubits.
num_clbits
Return number of classical bits.
num_layers
Type: int
Return the number of layers in the n-local circuit.
Return type
int
Returns
The number of layers in the circuit.
num_parameters
Convenience function to get the number of parameter objects in the circuit.
num_parameters_settable
The number of distinct parameters.
num_qubits
Type: int
Returns the number of qubits in this circuit.
Return type
int
Returns
The number of qubits.
ordered_parameters
Type: List[qiskit.circuit.parameter.Parameter]
The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ...
>>> print(nlocal)
┌───────┐┌──────────┐┌──────────┐┌──────────┐
q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├
└───────┘└──────────┘└──────────┘└──────────┘
>>> nlocal.parameters
{Parameter(θ[1]), Parameter(θ[3])}
>>> nlocal.ordered_parameters
[1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
Return type
List
[Parameter
]
Returns
The parameters objects used in the circuit.
parameter_bounds
Type: Optional[List[Tuple[float, float]]]
The parameter bounds for the unbound parameters in the circuit.
Return type
Optional
[List
[Tuple
[float
, float
]]]
Returns
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If None is returned, problem is fully unbounded.
parameters
Type: Set[qiskit.circuit.parameter.Parameter]
Get the Parameter
objects in the circuit.
Return type
Set
[Parameter
]
Returns
A set containing the unbound circuit parameters.
paulis
Type: List[str]
The Pauli strings used in the entanglement of the qubits.
Return type
List
[str
]
Returns
The Pauli strings as list.
preferred_init_points
Type: Optional[List[float]]
The initial points for the parameters. Can be stored as initial guess in optimization.
Return type
Optional
[List
[float
]]
Returns
The initial values for the parameters, or None, if none have been set.
prefix
Default value: 'circuit'
qregs
A list of the quantum registers associated with the circuit.
qubits
Returns a list of quantum bits in the order that the registers were added.
reps
Type: int
The number of times rotation and entanglement block are repeated.
Return type
int
Returns
The number of repetitions.
rotation_blocks
Type: List[qiskit.circuit.instruction.Instruction]
The blocks in the rotation layers.
Return type
List
[Instruction
]
Returns
The blocks in the rotation layers.
Methods
AND
ZZFeatureMap.AND(qr_variables, qb_target, qr_ancillae, flags=None, mct_mode='no-ancilla')
Build a collective conjunction (AND) circuit in place using mct.
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to build the conjunction on.
- qr_variables (QuantumRegister) – The QuantumRegister holding the variable qubits.
- qb_target (Qubit) – The target qubit to hold the conjunction result.
- qr_ancillae (QuantumRegister) – The ancillary QuantumRegister for building the mct.
- flags (list[int]) – A list of +1/-1/0 to mark negations or omissions of qubits.
- mct_mode (str) – The mct building mode.
OR
ZZFeatureMap.OR(qr_variables, qb_target, qr_ancillae, flags=None, mct_mode='basic')
Build a collective disjunction (OR) circuit in place using mct.
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to build the disjunction on.
- qr_variables (QuantumRegister) – The QuantumRegister holding the variable qubits.
- flags (list[int]) – A list of +1/-1/0 to mark negations or omissions of qubits.
- qb_target (Qubit) – The target qubit to hold the disjunction result.
- qr_ancillae (QuantumRegister) – The ancillary QuantumRegister for building the mct.
- mct_mode (str) – The mct building mode.
__getitem__
ZZFeatureMap.__getitem__(item)
Return indexed operation.
__len__
ZZFeatureMap.__len__()
Return number of operations in circuit.
add_layer
ZZFeatureMap.add_layer(other, entanglement=None, front=False)
Append another layer to the NLocal.
Parameters
- other (
Union
[NLocal
,Instruction
,QuantumCircuit
]) – The layer to compose, can be another NLocal, an Instruction or Gate, or a QuantumCircuit. - entanglement (
Union
[List
[int
],str
,List
[List
[int
]],None
]) – The entanglement or qubit indices. - front (
bool
) – If True,other
is appended to the front, else to the back.
Return type
Returns
self, such that chained composes are possible.
Raises
TypeError – If other is not compatible, i.e. is no Instruction and does not have a to_instruction method.
add_register
ZZFeatureMap.add_register(*regs)
Add registers.
append
ZZFeatureMap.append(instruction, qargs=None, cargs=None)
Append one or more instructions to the end of the circuit, modifying the circuit in place. Expands qargs and cargs.
Parameters
- instruction (qiskit.circuit.Instruction) – Instruction instance to append
- qargs (list(argument)) – qubits to attach instruction to
- cargs (list(argument)) – clbits to attach instruction to
Returns
a handle to the instruction that was just added
Return type
assign_parameters
ZZFeatureMap.assign_parameters(param_dict, inplace=False)
Assign parameters to the n-local circuit.
This method also supports passing a list instead of a dictionary. If a list is passed, the list must have the same length as the number of unbound parameters in the circuit. The parameters are assigned in the order of the parameters in ordered_parameters()
.
Return type
Optional
[QuantumCircuit
]
Returns
A copy of the NLocal circuit with the specified parameters.
Raises
AttributeError – If the parameters are given as list and do not match the number of parameters.
barrier
ZZFeatureMap.barrier(*qargs)
Apply Barrier
. If qargs is None, applies to all.
bind_parameters
ZZFeatureMap.bind_parameters(value_dict)
Assign numeric parameters to values yielding a new circuit.
To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the assign_parameters method.
Parameters
value_dict (dict) – {parameter: value, …}
Raises
- CircuitError – If value_dict contains parameters not present in the circuit
- TypeError – If value_dict contains a ParameterExpression in the values.
Returns
copy of self with assignment substitution.
Return type
cast
static ZZFeatureMap.cast(value, _type)
Best effort to cast value to type. Otherwise, returns the value.
cbit_argument_conversion
ZZFeatureMap.cbit_argument_conversion(clbit_representation)
Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.
Parameters
clbit_representation (Object) – representation to expand
Returns
Where each tuple is a classical bit.
Return type
List(tuple)
ccx
ZZFeatureMap.ccx(control_qubit1, control_qubit2, target_qubit, *, ctl1=None, ctl2=None, tgt=None)
Apply CCXGate
.
ch
ZZFeatureMap.ch(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CHGate
.
cls_instances
classmethod ZZFeatureMap.cls_instances()
Return the current number of instances of this class, useful for auto naming.
cls_prefix
classmethod ZZFeatureMap.cls_prefix()
Return the prefix to use for auto naming.
cnot
ZZFeatureMap.cnot(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CXGate
.
combine
ZZFeatureMap.combine(rhs)
Append rhs to self if self contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Return self + rhs as a new object.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns a new QuantumCircuit object
Return type
Raises
QiskitError – if the rhs circuit is not compatible
compose
ZZFeatureMap.compose(other, qubits=None, clbits=None, front=False, inplace=False)
Compose circuit with other
circuit or instruction, optionally permuting wires.
other
can be narrower or of equal width to self
.
Parameters
- other (qiskit.circuit.Instruction orQuantumCircuit or BaseOperator) – (sub)circuit to compose onto self.
- qubits (list[Qubit|int]) – qubits of self to compose onto.
- clbits (list[Clbit|int]) – clbits of self to compose onto.
- front (bool) – If True, front composition will be performed (not implemented yet).
- inplace (bool) – If True, modify the object. Otherwise return composed circuit.
Returns
the composed circuit (returns None if inplace==True).
Return type
Raises
- CircuitError – if composing on the front.
- QiskitError – if
other
is wider or there are duplicate edge mappings.
Examples
>>> lhs.compose(rhs, qubits=[3, 2], inplace=True)
┌───┐ ┌─────┐ ┌───┐
lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├───────────────
├───┤ ┌─┴─┐└─────┘ ├───┤
lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├───────────────
┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
└─────────┘ └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├
┌─┴─┐ ┌─┴─┐ └─────┘
lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├───────────────
└───┘ └───┘
lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════
lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
copy
ZZFeatureMap.copy(name=None)
Copy the circuit.
Parameters
name (str) – name to be given to the copied circuit. If None, then the name stays the same
Returns
a deepcopy of the current circuit, with the specified name
Return type
count_ops
ZZFeatureMap.count_ops()
Count each operation kind in the circuit.
Returns
a breakdown of how many operations of each kind, sorted by amount.
Return type
OrderedDict
crx
ZZFeatureMap.crx(theta, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CRXGate
.
cry
ZZFeatureMap.cry(theta, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CRYGate
.
crz
ZZFeatureMap.crz(theta, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CRZGate
.
cswap
ZZFeatureMap.cswap(control_qubit, target_qubit1, target_qubit2, *, label=None, ctrl_state=None, ctl=None, tgt1=None, tgt2=None)
Apply CSwapGate
.
cu1
ZZFeatureMap.cu1(theta, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CU1Gate
.
cu3
ZZFeatureMap.cu3(theta, phi, lam, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CU3Gate
.
cx
ZZFeatureMap.cx(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CXGate
.
cy
ZZFeatureMap.cy(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CYGate
.
cz
ZZFeatureMap.cz(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CZGate
.
dcx
ZZFeatureMap.dcx(qubit1, qubit2)
Apply DCXGate
.
decompose
ZZFeatureMap.decompose()
Call a decomposition pass on this circuit, to decompose one level (shallow decompose).
Returns
a circuit one level decomposed
Return type
depth
ZZFeatureMap.depth()
Return circuit depth (i.e., length of critical path). This does not include compiler or simulator directives such as ‘barrier’ or ‘snapshot’.
Returns
Depth of circuit.
Return type
int
Notes
The circuit depth and the DAG depth need not be the same.
diag_gate
ZZFeatureMap.diag_gate(diag, qubit)
Deprecated version of QuantumCircuit.diagonal.
diagonal
ZZFeatureMap.diagonal(diag, qubit)
Attach a diagonal gate to a circuit.
The decomposition is based on Theorem 7 given in “Synthesis of Quantum Logic Circuits” by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).
Parameters
- diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries
- qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)
Returns
the diagonal gate which was attached to the circuit.
Return type
Raises
QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits
draw
ZZFeatureMap.draw(output=None, scale=0.7, filename=None, style=None, interactive=False, line_length=None, plot_barriers=True, reverse_bits=False, justify=None, vertical_compression='medium', idle_wires=True, with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=False)
Draw the quantum circuit.
text: ASCII art TextDrawing that can be printed in the console.
latex: high-quality images compiled via LaTeX.
latex_source: raw uncompiled LaTeX output.
matplotlib: images with color rendered purely in Python.
Parameters
- output (str) – Select the output method to use for drawing the circuit. Valid choices are
text
,latex
,latex_source
, ormpl
. By default the ‘text’ drawer is used unless a user config file has an alternative backend set as the default. If the output kwarg is set, that backend will always be used over the default in a user config file. - scale (float) – scale of image to draw (shrink if < 1)
- filename (str) – file path to save image to
- style (dict or str) – dictionary of style or file name of style file. This option is only used by the
mpl
output type. If a str is passed in that is the path to a json file which contains a dictionary of style, then that will be opened, parsed, and used as the input dict. See: Style Dict Doc for more information on the contents. - interactive (bool) – when set true show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored.
- line_length (int) – Deprecated; see fold which supersedes this option. Sets the length of the lines generated by text output type. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil.get_terminal_size()
. However, if you’re running in jupyter, the default line length is set to 80 characters. If you don’t want pagination at all, setline_length=-1
. - reverse_bits (bool) – When set to True, reverse the bit order inside registers for the output visualization.
- plot_barriers (bool) – Enable/disable drawing barriers in the output circuit. Defaults to True.
- justify (string) – Options are
left
,right
ornone
. If anything else is supplied it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option.none
results in each gate being placed in its own column. - vertical_compression (string) –
high
,medium
orlow
. It merges the lines generated by thetext
output so the drawing will take less vertical room. Default ismedium
. Only used by thetext
output, will be silently ignored otherwise. - idle_wires (bool) – Include idle wires (wires with no circuit elements) in output visualization. Default is True.
- with_layout (bool) – Include layout information, with labels on the physical layout. Default is True.
- fold (int) – Sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil. get_terminal_size()
. However, if running in jupyter, the default line length is set to 80 characters. Inmpl
is the number of (visual) layers before folding. Default is 25. - ax (matplotlib.axes.Axes) – An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified, there will be no returned Figure since it is redundant. This is only used when the
output
kwarg is set to use thempl
backend. It will be silently ignored with all other outputs. - initial_state (bool) – Optional. Adds
|0>
in the beginning of the wire. Only used by thetext
,latex
andlatex_source
outputs. Default:False
. - cregbundle (bool) – Optional. If set True bundle classical registers. Only used by the
text
output. Default:False
.
Returns
PIL.Image
or matplotlib.figure
or str
or TextDrawing
:
-
PIL.Image (output=’latex’)
an in-memory representation of the image of the circuit diagram.
-
matplotlib.figure.Figure (output=’mpl’)
a matplotlib figure object for the circuit diagram.
-
str (output=’latex_source’)
The LaTeX source code for visualizing the circuit diagram.
-
TextDrawing (output=’text’)
A drawing that can be printed as ASCII art.
Raises
- VisualizationError – when an invalid output method is selected
- ImportError – when the output methods require non-installed libraries
Style Dict Details
The style dict kwarg contains numerous options that define the style of the output circuit visualization. The style dict is only used by the mpl
output. The options available in the style dict are defined below:
Parameters
-
textcolor (str) – The color code to use for text. Defaults to ‘#000000’
-
subtextcolor (str) – The color code to use for subtext. Defaults to ‘#000000’
-
linecolor (str) – The color code to use for lines. Defaults to ‘#000000’
-
creglinecolor (str) – The color code to use for classical register lines. Defaults to ‘#778899’
-
gatetextcolor (str) – The color code to use for gate text. Defaults to ‘#000000’
-
gatefacecolor (str) – The color code to use for gates. Defaults to ‘#ffffff’
-
barrierfacecolor (str) – The color code to use for barriers. Defaults to ‘#bdbdbd’
-
backgroundcolor (str) – The color code to use for the background. Defaults to ‘#ffffff’
-
fontsize (int) – The font size to use for text. Defaults to 13.
-
subfontsize (int) – The font size to use for subtext. Defaults to 8.
-
displaytext (dict) –
A dictionary of the text to use for each element type in the output visualization. The default values are:
{ 'id': 'id', 'u0': 'U_0', 'u1': 'U_1', 'u2': 'U_2', 'u3': 'U_3', 'x': 'X', 'y': 'Y', 'z': 'Z', 'h': 'H', 's': 'S', 'sdg': 'S^\dagger', 't': 'T', 'tdg': 'T^\dagger', 'rx': 'R_x', 'ry': 'R_y', 'rz': 'R_z', 'reset': '\left|0\right\rangle' }
You must specify all the necessary values if using this. There is no provision for passing an incomplete dict in.
-
displaycolor (dict) –
The color codes to use for each circuit
element. The default values are:
{ 'id': '#F0E442', 'u0': '#E7AB3B', 'u1': '#E7AB3B', 'u2': '#E7AB3B', 'u3': '#E7AB3B', 'x': '#58C698', 'y': '#58C698', 'z': '#58C698', 'h': '#70B7EB', 's': '#E0722D', 'sdg': '#E0722D', 't': '#E0722D', 'tdg': '#E0722D', 'rx': '#ffffff', 'ry': '#ffffff', 'rz': '#ffffff', 'reset': '#D188B4', 'target': '#70B7EB', 'meas': '#D188B4' }
Also, just like displaytext there is no provision for an incomplete dict passed in.
-
latexdrawerstyle (bool) – When set to True, enable LaTeX mode, which will draw gates like the latex output modes.
-
usepiformat (bool) – When set to True, use radians for output.
-
fold (int) – The number of circuit elements to fold the circuit at. Defaults to 20.
-
cregbundle (bool) – If set True, bundle classical registers
-
showindex (bool) – If set True, draw an index.
-
compress (bool) – If set True, draw a compressed circuit.
-
figwidth (int) – The maximum width (in inches) for the output figure.
-
dpi (int) – The DPI to use for the output image. Defaults to 150.
-
margin (list) – A list of margin values to adjust spacing around output image. Takes a list of 4 ints: [x left, x right, y bottom, y top].
-
creglinestyle (str) – The style of line to use for classical registers. Choices are ‘solid’, ‘doublet’, or any valid matplotlib linestyle kwarg value. Defaults to doublet
extend
ZZFeatureMap.extend(rhs)
Append QuantumCircuit to the right hand side if it contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Modify and return self.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns this QuantumCircuit object (which has been modified)
Return type
Raises
QiskitError – if the rhs circuit is not compatible
fredkin
ZZFeatureMap.fredkin(control_qubit, target_qubit1, target_qubit2, *, ctl=None, tgt1=None, tgt2=None)
Apply CSwapGate
.
from_qasm_file
static ZZFeatureMap.from_qasm_file(path)
Take in a QASM file and generate a QuantumCircuit object.
Parameters
path (str) – Path to the file for a QASM program
Returns
The QuantumCircuit object for the input QASM
Return type
from_qasm_str
static ZZFeatureMap.from_qasm_str(qasm_str)
Take in a QASM string and generate a QuantumCircuit object.
Parameters
qasm_str (str) – A QASM program string
Returns
The QuantumCircuit object for the input QASM
Return type
get_entangler_map
ZZFeatureMap.get_entangler_map(rep_num, block_num, num_block_qubits)
Get the entangler map for in the repetition rep_num
and the block block_num
.
The entangler map for the current block is derived from the value of self.entanglement
. Below the different cases are listed, where i
and j
denote the repetition number and the block number, respectively, and n
the number of qubits in the block.
entanglement type | entangler map ——————————-+——————————————————– None | [[0, …, n - 1]] str (e.g ‘full’) | the specified connectivity on n
qubits List[int] | [entanglement
] List[List[int]] | entanglement
List[List[List[int]]] | entanglement[i]
List[List[List[List[int]]]] | entanglement[i][j]
List[str] | the connectivity specified in entanglement[i]
List[List[str]] | the connectivity specified in entanglement[i][j]
Callable[int, str] | same as List[str] Callable[int, List[List[int]]] | same as List[List[List[int]]]
Note that all indices are to be taken modulo the length of the array they act on, i.e. no out-of-bounds index error will be raised but we re-iterate from the beginning of the list.
Parameters
- rep_num (
int
) – The current repetition we are in. - block_num (
int
) – The block number within the entanglement layers. - num_block_qubits (
int
) – The number of qubits in the block.
Return type
List
[List
[int
]]
Returns
The entangler map for the current block in the current repetition.
Raises
ValueError – If the value of entanglement
could not be cast to a corresponding entangler map.
get_unentangled_qubits
ZZFeatureMap.get_unentangled_qubits()
Get the indices of unentangled qubits in a set.
Return type
Set
[int
]
Returns
The unentangled qubits.
h
ZZFeatureMap.h(qubit, *, q=None)
Apply HGate
.
hamiltonian
ZZFeatureMap.hamiltonian(operator, time, qubits, label=None)
Apply hamiltonian evolution to to qubits.
has_register
ZZFeatureMap.has_register(register)
Test if this circuit has the register r.
Parameters
register (Register) – a quantum or classical register.
Returns
True if the register is contained in this circuit.
Return type
bool
i
ZZFeatureMap.i(qubit, *, q=None)
Apply IGate
.
id
ZZFeatureMap.id(qubit, *, q=None)
Apply IGate
.
iden
ZZFeatureMap.iden(qubit, *, q=None)
Deprecated identity gate.
initialize
ZZFeatureMap.initialize(params, qubits)
Apply initialize to circuit.
inverse
ZZFeatureMap.inverse()
Invert this circuit.
This is done by recursively inverting all gates.
Returns
the inverted circuit
Return type
Raises
CircuitError – if the circuit cannot be inverted.
iso
ZZFeatureMap.iso(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
isometry
ZZFeatureMap.isometry(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
iswap
ZZFeatureMap.iswap(qubit1, qubit2)
Apply iSwapGate
.
mcmt
ZZFeatureMap.mcmt(gate, control_qubits, target_qubits, ancilla_qubits=None, mode='no-ancilla', *, single_control_gate_fun=None, q_controls=None, q_ancillae=None, q_targets=None)
Apply a multi-control, multi-target using a generic gate.
This can also be used to implement a generic multi-control gate, as the target could also be of length 1.
mcrx
ZZFeatureMap.mcrx(theta, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled X rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use u1, u2, u3, cx, id
Raises
QiskitError – parameter errors
mcry
ZZFeatureMap.mcry(theta, q_controls, q_target, q_ancillae, mode='basic', use_basis_gates=False)
Apply Multiple-Controlled Y rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.
- mode (string) – The implementation mode to use
- use_basis_gates (bool) – use u1, u2, u3, cx, id
Raises
QiskitError – parameter errors
mcrz
ZZFeatureMap.mcrz(lam, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled Z rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrz gate on.
- lam (float) – angle lambda
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use u1, u2, u3, cx, id
Raises
QiskitError – parameter errors
mct
ZZFeatureMap.mct(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
mcu1
ZZFeatureMap.mcu1(lam, control_qubits, target_qubit)
Apply MCU1Gate
.
mcx
ZZFeatureMap.mcx(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are: - ‘no-ancilla’: Requires 0 ancilla qubits. - ‘recursion’: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0. - ‘v-chain’: Requires 2 less ancillas than the number of control qubits. - ‘v-chain-dirty’: Same as for the clean ancillas (but the circuit will be longer).
measure
ZZFeatureMap.measure(qubit, cbit)
Measure quantum bit into classical bit (tuples).
Parameters
- qubit (QuantumRegister|list|tuple) – quantum register
- cbit (ClassicalRegister|list|tuple) – classical register
Returns
the attached measure instruction.
Return type
qiskit.Instruction
Raises
CircuitError – if qubit is not in this circuit or bad format; if cbit is not in this circuit or not creg.
measure_active
ZZFeatureMap.measure_active(inplace=True)
Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
measure_all
ZZFeatureMap.measure_all(inplace=True)
Adds measurement to all qubits. Creates a new ClassicalRegister with a size equal to the number of qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
mirror
ZZFeatureMap.mirror()
Mirror the circuit by reversing the instructions.
This is done by recursively mirroring all instructions. It does not invert any gate.
Returns
the mirrored circuit
Return type
ms
ZZFeatureMap.ms(theta, qubits)
Apply MSGate
.
num_connected_components
ZZFeatureMap.num_connected_components(unitary_only=False)
How many non-entangled subcircuits can the circuit be factored to.
Parameters
unitary_only (bool) – Compute only unitary part of graph.
Returns
Number of connected components in circuit.
Return type
int
num_nonlocal_gates
ZZFeatureMap.num_nonlocal_gates()
Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
num_tensor_factors
ZZFeatureMap.num_tensor_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Notes
This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.
num_unitary_factors
ZZFeatureMap.num_unitary_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
pauli_block
ZZFeatureMap.pauli_block(pauli_string)
Get the Pauli block for the feature map circuit.
pauli_evolution
ZZFeatureMap.pauli_evolution(pauli_string, time)
Get the evolution block for the given pauli string.
print_settings
ZZFeatureMap.print_settings()
Returns information about the setting.
Return type
str
Returns
The class name and the attributes/parameters of the instance as str
.
qasm
ZZFeatureMap.qasm(formatted=False, filename=None)
Return OpenQASM string.
Parameters
- formatted (bool) – Return formatted Qasm string.
- filename (str) – Save Qasm to file with name ‘filename’.
Returns
If formatted=False.
Return type
str
Raises
ImportError – If pygments is not installed and formatted
is True
.
qbit_argument_conversion
ZZFeatureMap.qbit_argument_conversion(qubit_representation)
Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.
Parameters
qubit_representation (Object) – representation to expand
Returns
Where each tuple is a qubit.
Return type
List(tuple)
r
ZZFeatureMap.r(theta, phi, qubit, *, q=None)
Apply RGate
.
rcccx
ZZFeatureMap.rcccx(control_qubit1, control_qubit2, control_qubit3, target_qubit)
Apply RC3XGate
.
rccx
ZZFeatureMap.rccx(control_qubit1, control_qubit2, target_qubit)
Apply RCCXGate
.
remove_final_measurements
ZZFeatureMap.remove_final_measurements(inplace=True)
Removes final measurement on all qubits if they are present. Deletes the ClassicalRegister that was used to store the values from these measurements if it is idle.
Returns a new circuit without measurements if inplace=False.
Parameters
inplace (bool) – All measurements removed inplace or return new circuit.
Returns
Returns circuit with measurements removed when inplace = False.
Return type
reset
ZZFeatureMap.reset(qubit)
Reset q.
rx
ZZFeatureMap.rx(theta, qubit, *, label=None, q=None)
Apply RXGate
.
rxx
ZZFeatureMap.rxx(theta, qubit1, qubit2)
Apply RXXGate
.
ry
ZZFeatureMap.ry(theta, qubit, *, label=None, q=None)
Apply RYGate
.
ryy
ZZFeatureMap.ryy(theta, qubit1, qubit2)
Apply RYYGate
.
rz
ZZFeatureMap.rz(phi, qubit, *, q=None)
Apply RZGate
.
rzx
ZZFeatureMap.rzx(theta, qubit1, qubit2)
Apply RZXGate
.
rzz
ZZFeatureMap.rzz(theta, qubit1, qubit2)
Apply RZZGate
.
s
ZZFeatureMap.s(qubit, *, q=None)
Apply SGate
.
sdg
ZZFeatureMap.sdg(qubit, *, q=None)
Apply SdgGate
.
size
ZZFeatureMap.size()
Returns total number of gate operations in circuit.
Returns
Total number of gate operations.
Return type
int
snapshot
ZZFeatureMap.snapshot(label, snapshot_type='statevector', qubits=None, params=None)
Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier). :param label: a snapshot label to report the result :type label: str :param snapshot_type: the type of the snapshot. :type snapshot_type: str :param qubits: the qubits to apply snapshot to [Default: None]. :type qubits: list or None :param params: the parameters for snapshot_type [Default: None]. :type params: list or None
Returns
with attached command
Return type
Raises
ExtensionError – malformed command
snapshot_density_matrix
ZZFeatureMap.snapshot_density_matrix(label, qubits=None)
Take a density matrix snapshot of simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_expectation_value
ZZFeatureMap.snapshot_expectation_value(label, op, qubits, single_shot=False, variance=False)
Take a snapshot of expectation value <O> of an Operator.
Parameters
- label (str) – a snapshot label to report the result
- op (Operator) – operator to snapshot
- qubits (list) – the qubits to snapshot.
- single_shot (bool) – return list for each shot rather than average [Default: False]
- variance (bool) – compute variance of probabilities [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_probabilities
ZZFeatureMap.snapshot_probabilities(label, qubits, variance=False)
Take a probability snapshot of the simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list) – the qubits to snapshot.
- variance (bool) – compute variance of probabilities [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_stabilizer
ZZFeatureMap.snapshot_stabilizer(label)
Take a stabilizer snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
snapshot_statevector
ZZFeatureMap.snapshot_statevector(label)
Take a statevector snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
squ
ZZFeatureMap.squ(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False, *, u=None)
Decompose an arbitrary 2*2 unitary into three rotation gates.
Note that the decomposition is up to a global phase shift. (This is a well known decomposition, which can be found for example in Nielsen and Chuang’s book “Quantum computation and quantum information”.)
Parameters
- unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).
- qubit (QuantumRegister |Qubit) – The qubit which the gate is acting on.
- mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: “ZYZ” (default)
- up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u’ is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u’)
- u (ndarray) – Deprecated, use
unitary_matrix
instead.
Returns
The single-qubit unitary instruction attached to the circuit.
Return type
Raises
QiskitError – if the format is wrong; if the array u is not unitary
swap
ZZFeatureMap.swap(qubit1, qubit2)
Apply SwapGate
.
t
ZZFeatureMap.t(qubit, *, q=None)
Apply TGate
.
tdg
ZZFeatureMap.tdg(qubit, *, q=None)
Apply TdgGate
.
to_gate
ZZFeatureMap.to_gate(parameter_map=None)
Create a Gate out of this circuit.
Parameters
parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the gate. If None, existing circuit parameters will also parameterize the gate.
Returns
a composite gate encapsulating this circuit (can be decomposed back)
Return type
to_instruction
ZZFeatureMap.to_instruction(parameter_map=None)
Create an Instruction out of this circuit.
Parameters
parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction.
Returns
a composite instruction encapsulating this circuit (can be decomposed back)
Return type
toffoli
ZZFeatureMap.toffoli(control_qubit1, control_qubit2, target_qubit, *, ctl1=None, ctl2=None, tgt=None)
Apply CCXGate
.
u1
ZZFeatureMap.u1(theta, qubit, *, q=None)
Apply U1Gate
.
u2
ZZFeatureMap.u2(phi, lam, qubit, *, q=None)
Apply U2Gate
.
u3
ZZFeatureMap.u3(theta, phi, lam, qubit, *, q=None)
Apply U3Gate
.
uc
ZZFeatureMap.uc(gate_list, q_controls, q_target, up_to_diagonal=False)
Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.
The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.
Parameters
- gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array
- q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on
- q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.
- up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u’ is implemented such that there exists a diagonal gate d with u = d.dot(u’), where the unitary u describes the uniformly controlled gate
Returns
the uniformly controlled gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucg
ZZFeatureMap.ucg(angle_list, q_controls, q_target, up_to_diagonal=False)
Deprecated version of uc.
ucrx
ZZFeatureMap.ucrx(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list) – list of (real) rotation angles
- q_controls (QuantumRegister|list) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRx(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRx(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucry
ZZFeatureMap.ucry(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRy(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRy(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucrz
ZZFeatureMap.ucrz(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles [a_0,…,a_{2^k-1}]
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the rotation Rz(a_0)is performed if q[1] and q[2] are in the state zero, the rotation Rz(a_1) is performed if q[1] is in the state one and q[2] is in the state zero, and so on
- q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucx
ZZFeatureMap.ucx(angle_list, q_controls, q_target)
Deprecated version of ucrx.
ucy
ZZFeatureMap.ucy(angle_list, q_controls, q_target)
Deprecated version of ucry.
ucz
ZZFeatureMap.ucz(angle_list, q_controls, q_target)
Deprecated version of ucrz.
unitary
ZZFeatureMap.unitary(obj, qubits, label=None)
Apply unitary gate to q.
width
ZZFeatureMap.width()
Return number of qubits plus clbits in circuit.
Returns
Width of circuit.
Return type
int
x
ZZFeatureMap.x(qubit, *, label=None, ctrl_state=None, q=None)
Apply XGate
.
y
ZZFeatureMap.y(qubit, *, q=None)
Apply YGate
.
z
ZZFeatureMap.z(qubit, *, q=None)
Apply ZGate
.