Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

CRZGate

class CRZGate(theta, label=None, ctrl_state=None)

GitHub

Controlled-RZ gate.

This is a diagonal but non-symmetric gate that induces a phase on the state of the target qubit, depending on the control state.

Circuit symbol:

q_0: ────■────
     ┌───┴───┐
q_1:Rz(λ)
     └───────┘

Matrix representation:

CRZ(λ) q0,q1=I00+RZ(λ)11=(10000eiλ2000010000eiλ2)\begin{split}CRZ(\lambda)\ q_0, q_1 = I \otimes |0\rangle\langle 0| + RZ(\lambda) \otimes |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{-i\frac{\lambda}{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\frac{\lambda}{2}} \end{pmatrix}\end{split}
Note

In Qiskit’s convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_1. Thus a textbook matrix for this gate will be:

     ┌───────┐
q_0:Rz(λ)
     └───┬───┘
q_1: ────■────
CRZ(λ) q1,q0=00I+11RZ(λ)=(1000010000eiλ20000eiλ2)\begin{split}CRZ(\lambda)\ q_1, q_0 = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes RZ(\lambda) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{-i\frac{\lambda}{2}} & 0 \\ 0 & 0 & 0 & e^{i\frac{\lambda}{2}} \end{pmatrix}\end{split}
See also

CU1Gate: Due to the global phase difference in the matrix definitions of U1 and RZ, CU1 and CRZ are different gates with a relative phase difference.

Create new CRZ gate.


Attributes

ctrl_state

Type: int

Return the control state of the gate as a decimal integer.

Return type

int

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Type: List

Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl_state, the returned definition is conjugated with X without changing the internal _definition.

Return type

List

label

Type: str

Return gate label

Return type

str

params

return instruction params.


Methods

add_decomposition

CRZGate.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble

CRZGate.assemble()

Assemble a QasmQobjInstruction

Return type

Instruction

broadcast_arguments

CRZGate.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]

Parameters

  • qargs (List) – List of quantum bit arguments.
  • cargs (List) – List of classical bit arguments.

Return type

Tuple[List, List]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if

CRZGate.c_if(classical, val)

Add classical condition on register classical and value val.

control

CRZGate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return controlled version of gate. See ControlledGate for usage.

Parameters

  • num_ctrl_qubits (Optional[int]) – number of controls to add to gate (default=1)
  • label (Optional[str]) – optional gate label
  • ctrl_state (Union[int, str, None]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.

Returns

Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.

Return type

qiskit.circuit.ControlledGate

Raises

QiskitError – unrecognized mode or invalid ctrl_state

copy

CRZGate.copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name

updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

CRZGate.inverse()

Return inverse RZ gate (i.e. with the negative rotation angle).

is_parameterized

CRZGate.is_parameterized()

Return True .IFF. instruction is parameterized else False

mirror

CRZGate.mirror()

For a composite instruction, reverse the order of sub-gates.

This is done by recursively mirroring all sub-instructions. It does not invert any gate.

Returns

a fresh gate with sub-gates reversed

Return type

qiskit.circuit.Instruction

power

CRZGate.power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

qiskit.extensions.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm

CRZGate.qasm()

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

repeat

CRZGate.repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

to_matrix

CRZGate.to_matrix()

Return a Numpy.array for the gate unitary matrix.

Raises

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

Return type

ndarray

Was this page helpful?
Report a bug or request content on GitHub.