Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

CSwapGate

class CSwapGate(label=None, ctrl_state=None)

GitHub

Controlled-X gate.

Circuit symbol:

q_0: ─X─

q_1: ─X─

q_2: ─■─

Matrix representation:

CSWAP q0,q1,q2=00II+11SWAP=(1000000001000000001000000000010000001000000100000000001000000001)\begin{split}CSWAP\ q_0, q_1, q_2 = |0 \rangle \langle 0| \otimes I \otimes I + |1 \rangle \langle 1| \otimes SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix}\end{split}
Note

In Qiskit’s convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_2. Thus a textbook matrix for this gate will be:

q_0: ─■─

q_1: ─X─

q_2: ─X─
CSWAP q2,q1,q0=00II+11SWAP=(1000000001000000001000000001000000001000000000100000010000000001)\begin{split}CSWAP\ q_2, q_1, q_0 = |0 \rangle \langle 0| \otimes I \otimes I + |1 \rangle \langle 1| \otimes SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix}\end{split}

In the computational basis, this gate swaps the states of the two target qubits if the control qubit is in the 1|1\rangle state.

0,b,c0,b,c1,b,c1,c,b|0, b, c\rangle \rightarrow |0, b, c\rangle |1, b, c\rangle \rightarrow |1, c, b\rangle

Create new CSWAP gate.


Attributes

ctrl_state

Type: int

Return the control state of the gate as a decimal integer.

Return type

int

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Type: List

Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl_state, the returned definition is conjugated with X without changing the internal _definition.

Return type

List

label

Type: str

Return gate label

Return type

str

params

return instruction params.


Methods

add_decomposition

CSwapGate.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble

CSwapGate.assemble()

Assemble a QasmQobjInstruction

Return type

Instruction

broadcast_arguments

CSwapGate.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]

Parameters

  • qargs (List) – List of quantum bit arguments.
  • cargs (List) – List of classical bit arguments.

Return type

Tuple[List, List]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if

CSwapGate.c_if(classical, val)

Add classical condition on register classical and value val.

control

CSwapGate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return controlled version of gate. See ControlledGate for usage.

Parameters

  • num_ctrl_qubits (Optional[int]) – number of controls to add to gate (default=1)
  • label (Optional[str]) – optional gate label
  • ctrl_state (Union[int, str, None]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.

Returns

Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.

Return type

qiskit.circuit.ControlledGate

Raises

QiskitError – unrecognized mode or invalid ctrl_state

copy

CSwapGate.copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name

updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

CSwapGate.inverse()

Return inverse CSwap gate (itself).

is_parameterized

CSwapGate.is_parameterized()

Return True .IFF. instruction is parameterized else False

mirror

CSwapGate.mirror()

For a composite instruction, reverse the order of sub-gates.

This is done by recursively mirroring all sub-instructions. It does not invert any gate.

Returns

a fresh gate with sub-gates reversed

Return type

qiskit.circuit.Instruction

power

CSwapGate.power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

qiskit.extensions.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm

CSwapGate.qasm()

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

repeat

CSwapGate.repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

to_matrix

CSwapGate.to_matrix()

Return a numpy.array for the Fredkin (CSWAP) gate.

Was this page helpful?
Report a bug or request content on GitHub.