Skip to main contentIBM Quantum Documentation
You are viewing the API reference for an old version of Qiskit SDK. Switch to latest version

CU1Gate

class CU1Gate(theta, label=None, ctrl_state=None)

GitHub(opens in a new tab)

Controlled-U1 gate.

This is a diagonal and symmetric gate that induces a phase on the state of the target qubit, depending on the control state.

Circuit symbol:

q_0: ─■──
      │λ
q_1: ─■──

Matrix representation:

CU1=00I+11U1=(100001000010000eiλ)\begin{split}CU1 = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes U1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\lambda} \end{pmatrix}\end{split}
See also

CRZGate: Due to the global phase difference in the matrix definitions of U1 and RZ, CU1 and CRZ are different gates with a relative phase difference.

Create new CU1 gate.


Attributes

ctrl_state

Type: int

Return the control state of the gate as a decimal integer.

Return type

int

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Type: List

Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl_state, the returned definition is conjugated with X without changing the internal _definition.

Return type

List

label

Type: str

Return gate label

Return type

str

params

return instruction params.


Methods

add_decomposition

CU1Gate.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble

CU1Gate.assemble()

Assemble a QasmQobjInstruction

Return type

Instruction

broadcast_arguments

CU1Gate.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]

Parameters

  • qargs (List) – List of quantum bit arguments.
  • cargs (List) – List of classical bit arguments.

Return type

Tuple[List, List]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if

CU1Gate.c_if(classical, val)

Add classical condition on register classical and value val.

control

CU1Gate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Controlled version of this gate.

Parameters

  • num_ctrl_qubits (int) – number of control qubits.
  • label (str or None) – An optional label for the gate [Default: None]
  • ctrl_state (int or str or None) – control state expressed as integer, string (e.g. ‘110’), or None. If None, use all 1s.

Returns

controlled version of this gate.

Return type

ControlledGate

copy

CU1Gate.copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name

updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

CU1Gate.inverse()

Return inverted CU1 gate (CU1(λ)=CU1(λ)CU1(\lambda){\dagger} = CU1(-\lambda))

is_parameterized

CU1Gate.is_parameterized()

Return True .IFF. instruction is parameterized else False

mirror

CU1Gate.mirror()

For a composite instruction, reverse the order of sub-gates.

This is done by recursively mirroring all sub-instructions. It does not invert any gate.

Returns

a fresh gate with sub-gates reversed

Return type

qiskit.circuit.Instruction

power

CU1Gate.power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

qiskit.extensions.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm

CU1Gate.qasm()

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

repeat

CU1Gate.repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

to_matrix

CU1Gate.to_matrix()

Return a Numpy.array for the gate unitary matrix.

Raises

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

Return type

ndarray

Was this page helpful?
Report a bug or request content on GitHub.