U2Gate
class U2Gate(phi, lam, label=None)
Single-qubit rotation about the X+Z axis.
Implemented using one X90 pulse on IBM Quantum systems:
Circuit symbol:
┌─────────┐
q_0: ┤ U2(φ,λ) ├
└─────────┘
Matrix Representation:
Examples:
U3Gate
: U3 is a generalization of U2 that covers all single-qubit rotations, using two X90 pulses.
Create new U2 gate.
Attributes
decompositions
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
definition
Return definition in terms of other basic gates.
label
Type: str
Return gate label
Return type
str
params
return instruction params.
Methods
add_decomposition
U2Gate.add_decomposition(decomposition)
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
assemble
broadcast_arguments
U2Gate.broadcast_arguments(qargs, cargs)
Validation and handling of the arguments and its relationship.
For example, cx([q[0],q[1]], q[2])
means cx(q[0], q[2]); cx(q[1], q[2])
. This method yields the arguments in the right grouping. In the given example:
in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
[q[1], q[2]], []
The general broadcasting rules are:
If len(qargs) == 1:
[q[0], q[1]] -> [q[0]],[q[1]]
If len(qargs) == 2:
[[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]] [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]] [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
If len(qargs) >= 3:
[q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
Parameters
- qargs (
List
) – List of quantum bit arguments. - cargs (
List
) – List of classical bit arguments.
Return type
Tuple
[List
, List
]
Returns
A tuple with single arguments.
Raises
CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.
c_if
U2Gate.c_if(classical, val)
Add classical condition on register classical and value val.
control
U2Gate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)
Return controlled version of gate. See ControlledGate
for usage.
Parameters
- num_ctrl_qubits (
Optional
[int
]) – number of controls to add to gate (default=1) - label (
Optional
[str
]) – optional gate label - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.
Returns
Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.
Return type
Raises
QiskitError – unrecognized mode or invalid ctrl_state
copy
U2Gate.copy(name=None)
Copy of the instruction.
Parameters
name (str) – name to be given to the copied circuit, if None then the name stays the same.
Returns
a copy of the current instruction, with the name
updated if it was provided
Return type
inverse
U2Gate.inverse()
Return inverted U2 gate.
)
is_parameterized
U2Gate.is_parameterized()
Return True .IFF. instruction is parameterized else False
mirror
U2Gate.mirror()
For a composite instruction, reverse the order of sub-gates.
This is done by recursively mirroring all sub-instructions. It does not invert any gate.
Returns
a fresh gate with sub-gates reversed
Return type
power
U2Gate.power(exponent)
Creates a unitary gate as gate^exponent.
Parameters
exponent (float) – Gate^exponent
Returns
To which to_matrix is self.to_matrix^exponent.
Return type
Raises
CircuitError – If Gate is not unitary
qasm
U2Gate.qasm()
Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).
repeat
U2Gate.repeat(n)
Creates an instruction with gate repeated n amount of times.
Parameters
n (int) – Number of times to repeat the instruction
Returns
Containing the definition.
Return type
Raises
CircuitError – If n < 1.
to_matrix
U2Gate.to_matrix()
Return a Numpy.array for the U2 gate.