QFT
class QFT(num_qubits=None, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name='qft')
Quantum Fourier Transform Circuit.
The Quantum Fourier Transform (QFT) on qubits is the operation
The circuit that implements this transformation can be implemented using Hadamard gates on each qubit, a series of controlled-U1 (or Z, depending on the phase) gates and a layer of Swap gates. The layer of Swap gates can in principle be dropped if the QFT appears at the end of the circuit, since then the re-ordering can be done classically. They can be turned off using the do_swaps
attribute.
For 4 qubits, the circuit that implements this transformation is:
The inverse QFT can be obtained by calling the inverse
method on this class. The respective circuit diagram is:
One method to reduce circuit depth is to implement the QFT approximately by ignoring controlled-phase rotations where the angle is beneath a threshold. This is discussed in more detail in https://arxiv.org/abs/quant-ph/9601018 or https://arxiv.org/abs/quant-ph/0403071.
Here, this can be adjusted using the approximation_degree
attribute: the smallest approximation_degree
rotation angles are dropped from the QFT. For instance, a QFT on 5 qubits with approximation degree 2 yields (the barriers are dropped in this example):
Construct a new QFT circuit.
Parameters
- num_qubits (
Optional
[int
]) – The number of qubits on which the QFT acts. - approximation_degree (
int
) – The degree of approximation (0 for no approximation). - do_swaps (
bool
) – Whether to include the final swaps in the QFT. - inverse (
bool
) – If True, the inverse Fourier transform is constructed. - insert_barriers (
bool
) – If True, barriers are inserted as visualization improvement. - name (
str
) – The name of the circuit.
Attributes
approximation_degree
Type: int
The approximation degree of the QFT.
Return type
int
Returns
The currently set approximation degree.
clbits
Returns a list of classical bits in the order that the registers were added.
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the tuples for the circuit’s data.
Each tuple is in the format (instruction, qargs, cargs)
, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.
Return type
QuantumCircuitData
do_swaps
Type: bool
Whether the final swaps of the QFT are applied or not.
Return type
bool
Returns
True, if the final swaps are applied, False if not.
extension_lib
Default value: 'include "qelib1.inc";'
header
Default value: 'OPENQASM 2.0;'
insert_barriers
Type: bool
Whether barriers are inserted for better visualization or not.
Return type
bool
Returns
True, if barriers are inserted, False if not.
instances
Default value: 8
n_qubits
Deprecated, use num_qubits
instead. Return number of qubits.
num_clbits
Return number of classical bits.
num_parameters
Convenience function to get the number of parameter objects in the circuit.
num_qubits
Type: int
The number of qubits in the QFT circuit.
Return type
int
Returns
The number of qubits in the circuit.
This method needs to be overwritten to allow adding the setter for num_qubits while still complying to pylint.
parameters
Convenience function to get the parameters defined in the parameter table.
prefix
Default value: 'circuit'
qregs
A list of the quantum registers associated with the circuit.
qubits
Returns a list of quantum bits in the order that the registers were added.
Methods
AND
QFT.AND(qr_variables, qb_target, qr_ancillae, flags=None, mct_mode='no-ancilla')
Build a collective conjunction (AND) circuit in place using mct.
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to build the conjunction on.
- qr_variables (QuantumRegister) – The QuantumRegister holding the variable qubits.
- qb_target (Qubit) – The target qubit to hold the conjunction result.
- qr_ancillae (QuantumRegister) – The ancillary QuantumRegister for building the mct.
- flags (list[int]) – A list of +1/-1/0 to mark negations or omissions of qubits.
- mct_mode (str) – The mct building mode.
OR
QFT.OR(qr_variables, qb_target, qr_ancillae, flags=None, mct_mode='basic')
Build a collective disjunction (OR) circuit in place using mct.
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to build the disjunction on.
- qr_variables (QuantumRegister) – The QuantumRegister holding the variable qubits.
- flags (list[int]) – A list of +1/-1/0 to mark negations or omissions of qubits.
- qb_target (Qubit) – The target qubit to hold the disjunction result.
- qr_ancillae (QuantumRegister) – The ancillary QuantumRegister for building the mct.
- mct_mode (str) – The mct building mode.
__getitem__
QFT.__getitem__(item)
Return indexed operation.
__len__
QFT.__len__()
Return number of operations in circuit.
add_register
QFT.add_register(*regs)
Add registers.
append
QFT.append(instruction, qargs=None, cargs=None)
Append one or more instructions to the end of the circuit, modifying the circuit in place. Expands qargs and cargs.
Parameters
- instruction (qiskit.circuit.Instruction) – Instruction instance to append
- qargs (list(argument)) – qubits to attach instruction to
- cargs (list(argument)) – clbits to attach instruction to
Returns
a handle to the instruction that was just added
Return type
assign_parameters
QFT.assign_parameters(param_dict, inplace=False)
Assign parameters to new parameters or values.
The keys of the parameter dictionary must be Parameter instances in the current circuit. The values of the dictionary can either be numeric values or new parameter objects. The values can be assigned to the current circuit object or to a copy of it.
Parameters
- param_dict (dict) – A dictionary specifying the mapping from
current_parameter
tonew_parameter
, wherenew_parameter
can be a new parameter object or a numeric value. - inplace (bool) – If False, a copy of the circuit with the bound parameters is returned. If True the circuit instance itself is modified.
Raises
CircuitError – If param_dict contains parameters not present in the circuit
Returns
A copy of the circuit with bound parameters, if
inplace
is True, otherwise None.
Return type
optional(QuantumCircuit)
Examples
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> circuit = QuantumCircuit(2)
>>> params = [Parameter('A'), Parameter('B'), Parameter('C')]
>>> circuit.ry(params[0], 0)
>>> circuit.crx(params[1], 0, 1)
>>> circuit.draw()
┌───────┐
q_0: |0>┤ Ry(A) ├────■────
└───────┘┌───┴───┐
q_1: |0>─────────┤ Rx(B) ├
└───────┘
>>> circuit.assign_parameters({params[0]: params[2]}, inplace=True)
>>> circuit.draw()
┌───────┐
q_0: |0>┤ Ry(C) ├────■────
└───────┘┌───┴───┐
q_1: |0>─────────┤ Rx(B) ├
└───────┘
>>> bound_circuit = circuit.assign_parameters({params[1]: 1, params[2]: 2})
>>> bound_circuit.draw()
┌───────┐
q_0: |0>┤ Ry(2) ├────■────
└───────┘┌───┴───┐
q_1: |0>─────────┤ Rx(1) ├
└───────┘
>>> bound_circuit.parameters # this one has no free parameters anymore
set()
>>> circuit.parameters # the original one is still parameterized
{Parameter(A), Parameter(C)}
barrier
QFT.barrier(*qargs)
Apply Barrier
. If qargs is None, applies to all.
bind_parameters
QFT.bind_parameters(value_dict)
Assign numeric parameters to values yielding a new circuit.
To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the assign_parameters method.
Parameters
value_dict (dict) – {parameter: value, …}
Raises
- CircuitError – If value_dict contains parameters not present in the circuit
- TypeError – If value_dict contains a ParameterExpression in the values.
Returns
copy of self with assignment substitution.
Return type
cast
static QFT.cast(value, _type)
Best effort to cast value to type. Otherwise, returns the value.
cbit_argument_conversion
QFT.cbit_argument_conversion(clbit_representation)
Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.
Parameters
clbit_representation (Object) – representation to expand
Returns
Where each tuple is a classical bit.
Return type
List(tuple)
ccx
QFT.ccx(control_qubit1, control_qubit2, target_qubit, *, ctl1=None, ctl2=None, tgt=None)
Apply CCXGate
.
ch
QFT.ch(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CHGate
.
cls_instances
classmethod QFT.cls_instances()
Return the current number of instances of this class, useful for auto naming.
cls_prefix
classmethod QFT.cls_prefix()
Return the prefix to use for auto naming.
cnot
QFT.cnot(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CXGate
.
combine
QFT.combine(rhs)
Append rhs to self if self contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Return self + rhs as a new object.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns a new QuantumCircuit object
Return type
Raises
QiskitError – if the rhs circuit is not compatible
compose
QFT.compose(other, qubits=None, clbits=None, front=False, inplace=False)
Compose circuit with other
circuit or instruction, optionally permuting wires.
other
can be narrower or of equal width to self
.
Parameters
- other (qiskit.circuit.Instruction orQuantumCircuit or BaseOperator) – (sub)circuit to compose onto self.
- qubits (list[Qubit|int]) – qubits of self to compose onto.
- clbits (list[Clbit|int]) – clbits of self to compose onto.
- front (bool) – If True, front composition will be performed (not implemented yet).
- inplace (bool) – If True, modify the object. Otherwise return composed circuit.
Returns
the composed circuit (returns None if inplace==True).
Return type
Raises
- CircuitError – if composing on the front.
- QiskitError – if
other
is wider or there are duplicate edge mappings.
Examples
>>> lhs.compose(rhs, qubits=[3, 2], inplace=True)
┌───┐ ┌─────┐ ┌───┐
lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├───────────────
├───┤ ┌─┴─┐└─────┘ ├───┤
lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├───────────────
┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
└─────────┘ └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├
┌─┴─┐ ┌─┴─┐ └─────┘
lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├───────────────
└───┘ └───┘
lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════
lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
copy
QFT.copy(name=None)
Copy the circuit.
Parameters
name (str) – name to be given to the copied circuit. If None, then the name stays the same
Returns
a deepcopy of the current circuit, with the specified name
Return type
count_ops
QFT.count_ops()
Count each operation kind in the circuit.
Returns
a breakdown of how many operations of each kind, sorted by amount.
Return type
OrderedDict
crx
QFT.crx(theta, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CRXGate
.
cry
QFT.cry(theta, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CRYGate
.
crz
QFT.crz(theta, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CRZGate
.
cswap
QFT.cswap(control_qubit, target_qubit1, target_qubit2, *, label=None, ctrl_state=None, ctl=None, tgt1=None, tgt2=None)
Apply CSwapGate
.
cu1
QFT.cu1(theta, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CU1Gate
.
cu3
QFT.cu3(theta, phi, lam, control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CU3Gate
.
cx
QFT.cx(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CXGate
.
cy
QFT.cy(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CYGate
.
cz
QFT.cz(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None)
Apply CZGate
.
dcx
QFT.dcx(qubit1, qubit2)
Apply DCXGate
.
decompose
QFT.decompose()
Call a decomposition pass on this circuit, to decompose one level (shallow decompose).
Returns
a circuit one level decomposed
Return type
depth
QFT.depth()
Return circuit depth (i.e., length of critical path). This does not include compiler or simulator directives such as ‘barrier’ or ‘snapshot’.
Returns
Depth of circuit.
Return type
int
Notes
The circuit depth and the DAG depth need not be the same.
diag_gate
QFT.diag_gate(diag, qubit)
Deprecated version of QuantumCircuit.diagonal.
diagonal
QFT.diagonal(diag, qubit)
Attach a diagonal gate to a circuit.
The decomposition is based on Theorem 7 given in “Synthesis of Quantum Logic Circuits” by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).
Parameters
- diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries
- qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)
Returns
the diagonal gate which was attached to the circuit.
Return type
Raises
QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits
draw
QFT.draw(output=None, scale=0.7, filename=None, style=None, interactive=False, line_length=None, plot_barriers=True, reverse_bits=False, justify=None, vertical_compression='medium', idle_wires=True, with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=False)
Draw the quantum circuit.
text: ASCII art TextDrawing that can be printed in the console.
latex: high-quality images compiled via LaTeX.
latex_source: raw uncompiled LaTeX output.
matplotlib: images with color rendered purely in Python.
Parameters
- output (str) – Select the output method to use for drawing the circuit. Valid choices are
text
,latex
,latex_source
, ormpl
. By default the ‘text’ drawer is used unless a user config file has an alternative backend set as the default. If the output kwarg is set, that backend will always be used over the default in a user config file. - scale (float) – scale of image to draw (shrink if < 1)
- filename (str) – file path to save image to
- style (dict or str) – dictionary of style or file name of style file. This option is only used by the
mpl
output type. If a str is passed in that is the path to a json file which contains a dictionary of style, then that will be opened, parsed, and used as the input dict. See: Style Dict Doc for more information on the contents. - interactive (bool) – when set true show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored.
- line_length (int) – Deprecated; see fold which supersedes this option. Sets the length of the lines generated by text output type. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil.get_terminal_size()
. However, if you’re running in jupyter, the default line length is set to 80 characters. If you don’t want pagination at all, setline_length=-1
. - reverse_bits (bool) – When set to True, reverse the bit order inside registers for the output visualization.
- plot_barriers (bool) – Enable/disable drawing barriers in the output circuit. Defaults to True.
- justify (string) – Options are
left
,right
ornone
. If anything else is supplied it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option.none
results in each gate being placed in its own column. - vertical_compression (string) –
high
,medium
orlow
. It merges the lines generated by thetext
output so the drawing will take less vertical room. Default ismedium
. Only used by thetext
output, will be silently ignored otherwise. - idle_wires (bool) – Include idle wires (wires with no circuit elements) in output visualization. Default is True.
- with_layout (bool) – Include layout information, with labels on the physical layout. Default is True.
- fold (int) – Sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil. get_terminal_size()
. However, if running in jupyter, the default line length is set to 80 characters. Inmpl
is the number of (visual) layers before folding. Default is 25. - ax (matplotlib.axes.Axes) – An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified, there will be no returned Figure since it is redundant. This is only used when the
output
kwarg is set to use thempl
backend. It will be silently ignored with all other outputs. - initial_state (bool) – Optional. Adds
|0>
in the beginning of the wire. Only used by thetext
,latex
andlatex_source
outputs. Default:False
. - cregbundle (bool) – Optional. If set True bundle classical registers. Only used by the
text
output. Default:False
.
Returns
PIL.Image
or matplotlib.figure
or str
or TextDrawing
:
-
PIL.Image (output=’latex’)
an in-memory representation of the image of the circuit diagram.
-
matplotlib.figure.Figure (output=’mpl’)
a matplotlib figure object for the circuit diagram.
-
str (output=’latex_source’)
The LaTeX source code for visualizing the circuit diagram.
-
TextDrawing (output=’text’)
A drawing that can be printed as ASCII art.
Raises
- VisualizationError – when an invalid output method is selected
- ImportError – when the output methods require non-installed libraries
Style Dict Details
The style dict kwarg contains numerous options that define the style of the output circuit visualization. The style dict is only used by the mpl
output. The options available in the style dict are defined below:
Parameters
-
textcolor (str) – The color code to use for text. Defaults to ‘#000000’
-
subtextcolor (str) – The color code to use for subtext. Defaults to ‘#000000’
-
linecolor (str) – The color code to use for lines. Defaults to ‘#000000’
-
creglinecolor (str) – The color code to use for classical register lines. Defaults to ‘#778899’
-
gatetextcolor (str) – The color code to use for gate text. Defaults to ‘#000000’
-
gatefacecolor (str) – The color code to use for gates. Defaults to ‘#ffffff’
-
barrierfacecolor (str) – The color code to use for barriers. Defaults to ‘#bdbdbd’
-
backgroundcolor (str) – The color code to use for the background. Defaults to ‘#ffffff’
-
fontsize (int) – The font size to use for text. Defaults to 13.
-
subfontsize (int) – The font size to use for subtext. Defaults to 8.
-
displaytext (dict) –
A dictionary of the text to use for each element type in the output visualization. The default values are:
{ 'id': 'id', 'u0': 'U_0', 'u1': 'U_1', 'u2': 'U_2', 'u3': 'U_3', 'x': 'X', 'y': 'Y', 'z': 'Z', 'h': 'H', 's': 'S', 'sdg': 'S^\dagger', 't': 'T', 'tdg': 'T^\dagger', 'rx': 'R_x', 'ry': 'R_y', 'rz': 'R_z', 'reset': '\left|0\right\rangle' }
You must specify all the necessary values if using this. There is no provision for passing an incomplete dict in.
-
displaycolor (dict) –
The color codes to use for each circuit
element. The default values are:
{ 'id': '#F0E442', 'u0': '#E7AB3B', 'u1': '#E7AB3B', 'u2': '#E7AB3B', 'u3': '#E7AB3B', 'x': '#58C698', 'y': '#58C698', 'z': '#58C698', 'h': '#70B7EB', 's': '#E0722D', 'sdg': '#E0722D', 't': '#E0722D', 'tdg': '#E0722D', 'rx': '#ffffff', 'ry': '#ffffff', 'rz': '#ffffff', 'reset': '#D188B4', 'target': '#70B7EB', 'meas': '#D188B4' }
Also, just like displaytext there is no provision for an incomplete dict passed in.
-
latexdrawerstyle (bool) – When set to True, enable LaTeX mode, which will draw gates like the latex output modes.
-
usepiformat (bool) – When set to True, use radians for output.
-
fold (int) – The number of circuit elements to fold the circuit at. Defaults to 20.
-
cregbundle (bool) – If set True, bundle classical registers
-
showindex (bool) – If set True, draw an index.
-
compress (bool) – If set True, draw a compressed circuit.
-
figwidth (int) – The maximum width (in inches) for the output figure.
-
dpi (int) – The DPI to use for the output image. Defaults to 150.
-
margin (list) – A list of margin values to adjust spacing around output image. Takes a list of 4 ints: [x left, x right, y bottom, y top].
-
creglinestyle (str) – The style of line to use for classical registers. Choices are ‘solid’, ‘doublet’, or any valid matplotlib linestyle kwarg value. Defaults to doublet
extend
QFT.extend(rhs)
Append QuantumCircuit to the right hand side if it contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Modify and return self.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns this QuantumCircuit object (which has been modified)
Return type
Raises
QiskitError – if the rhs circuit is not compatible
fredkin
QFT.fredkin(control_qubit, target_qubit1, target_qubit2, *, ctl=None, tgt1=None, tgt2=None)
Apply CSwapGate
.
from_qasm_file
static QFT.from_qasm_file(path)
Take in a QASM file and generate a QuantumCircuit object.
Parameters
path (str) – Path to the file for a QASM program
Returns
The QuantumCircuit object for the input QASM
Return type
from_qasm_str
static QFT.from_qasm_str(qasm_str)
Take in a QASM string and generate a QuantumCircuit object.
Parameters
qasm_str (str) – A QASM program string
Returns
The QuantumCircuit object for the input QASM
Return type
h
QFT.h(qubit, *, q=None)
Apply HGate
.
hamiltonian
QFT.hamiltonian(operator, time, qubits, label=None)
Apply hamiltonian evolution to to qubits.
has_register
QFT.has_register(register)
Test if this circuit has the register r.
Parameters
register (Register) – a quantum or classical register.
Returns
True if the register is contained in this circuit.
Return type
bool
i
QFT.i(qubit, *, q=None)
Apply IGate
.
id
QFT.id(qubit, *, q=None)
Apply IGate
.
iden
QFT.iden(qubit, *, q=None)
Deprecated identity gate.
initialize
QFT.initialize(params, qubits)
Apply initialize to circuit.
inverse
is_inverse
QFT.is_inverse()
Whether the inverse Fourier transform is implemented.
Return type
bool
Returns
True, if the inverse Fourier transform is implemented, False otherwise.
iso
QFT.iso(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
isometry
QFT.isometry(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
iswap
QFT.iswap(qubit1, qubit2)
Apply iSwapGate
.
mcmt
QFT.mcmt(gate, control_qubits, target_qubits, ancilla_qubits=None, mode='no-ancilla', *, single_control_gate_fun=None, q_controls=None, q_ancillae=None, q_targets=None)
Apply a multi-control, multi-target using a generic gate.
This can also be used to implement a generic multi-control gate, as the target could also be of length 1.
mcrx
QFT.mcrx(theta, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled X rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use u1, u2, u3, cx, id
Raises
QiskitError – parameter errors
mcry
QFT.mcry(theta, q_controls, q_target, q_ancillae, mode='basic', use_basis_gates=False)
Apply Multiple-Controlled Y rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.
- mode (string) – The implementation mode to use
- use_basis_gates (bool) – use u1, u2, u3, cx, id
Raises
QiskitError – parameter errors
mcrz
QFT.mcrz(lam, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled Z rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrz gate on.
- lam (float) – angle lambda
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use u1, u2, u3, cx, id
Raises
QiskitError – parameter errors
mct
QFT.mct(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
mcu1
QFT.mcu1(lam, control_qubits, target_qubit)
Apply MCU1Gate
.
mcx
QFT.mcx(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are: - ‘no-ancilla’: Requires 0 ancilla qubits. - ‘recursion’: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0. - ‘v-chain’: Requires 2 less ancillas than the number of control qubits. - ‘v-chain-dirty’: Same as for the clean ancillas (but the circuit will be longer).
measure
QFT.measure(qubit, cbit)
Measure quantum bit into classical bit (tuples).
Parameters
- qubit (QuantumRegister|list|tuple) – quantum register
- cbit (ClassicalRegister|list|tuple) – classical register
Returns
the attached measure instruction.
Return type
qiskit.Instruction
Raises
CircuitError – if qubit is not in this circuit or bad format; if cbit is not in this circuit or not creg.
measure_active
QFT.measure_active(inplace=True)
Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
measure_all
QFT.measure_all(inplace=True)
Adds measurement to all qubits. Creates a new ClassicalRegister with a size equal to the number of qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
mirror
QFT.mirror()
Mirror the circuit by reversing the instructions.
This is done by recursively mirroring all instructions. It does not invert any gate.
Returns
the mirrored circuit
Return type
ms
QFT.ms(theta, qubits)
Apply MSGate
.
num_connected_components
QFT.num_connected_components(unitary_only=False)
How many non-entangled subcircuits can the circuit be factored to.
Parameters
unitary_only (bool) – Compute only unitary part of graph.
Returns
Number of connected components in circuit.
Return type
int
num_nonlocal_gates
QFT.num_nonlocal_gates()
Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
num_tensor_factors
QFT.num_tensor_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Notes
This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.
num_unitary_factors
QFT.num_unitary_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
qasm
QFT.qasm(formatted=False, filename=None)
Return OpenQASM string.
Parameters
- formatted (bool) – Return formatted Qasm string.
- filename (str) – Save Qasm to file with name ‘filename’.
Returns
If formatted=False.
Return type
str
Raises
ImportError – If pygments is not installed and formatted
is True
.
qbit_argument_conversion
QFT.qbit_argument_conversion(qubit_representation)
Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.
Parameters
qubit_representation (Object) – representation to expand
Returns
Where each tuple is a qubit.
Return type
List(tuple)
r
QFT.r(theta, phi, qubit, *, q=None)
Apply RGate
.
rcccx
QFT.rcccx(control_qubit1, control_qubit2, control_qubit3, target_qubit)
Apply RC3XGate
.
rccx
QFT.rccx(control_qubit1, control_qubit2, target_qubit)
Apply RCCXGate
.
remove_final_measurements
QFT.remove_final_measurements(inplace=True)
Removes final measurement on all qubits if they are present. Deletes the ClassicalRegister that was used to store the values from these measurements if it is idle.
Returns a new circuit without measurements if inplace=False.
Parameters
inplace (bool) – All measurements removed inplace or return new circuit.
Returns
Returns circuit with measurements removed when inplace = False.
Return type
reset
QFT.reset(qubit)
Reset q.
rx
QFT.rx(theta, qubit, *, label=None, q=None)
Apply RXGate
.
rxx
QFT.rxx(theta, qubit1, qubit2)
Apply RXXGate
.
ry
QFT.ry(theta, qubit, *, label=None, q=None)
Apply RYGate
.
ryy
QFT.ryy(theta, qubit1, qubit2)
Apply RYYGate
.
rz
QFT.rz(phi, qubit, *, q=None)
Apply RZGate
.
rzx
QFT.rzx(theta, qubit1, qubit2)
Apply RZXGate
.
rzz
QFT.rzz(theta, qubit1, qubit2)
Apply RZZGate
.
s
QFT.s(qubit, *, q=None)
Apply SGate
.
sdg
QFT.sdg(qubit, *, q=None)
Apply SdgGate
.
size
QFT.size()
Returns total number of gate operations in circuit.
Returns
Total number of gate operations.
Return type
int
snapshot
QFT.snapshot(label, snapshot_type='statevector', qubits=None, params=None)
Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier). :param label: a snapshot label to report the result :type label: str :param snapshot_type: the type of the snapshot. :type snapshot_type: str :param qubits: the qubits to apply snapshot to [Default: None]. :type qubits: list or None :param params: the parameters for snapshot_type [Default: None]. :type params: list or None
Returns
with attached command
Return type
Raises
ExtensionError – malformed command
snapshot_density_matrix
QFT.snapshot_density_matrix(label, qubits=None)
Take a density matrix snapshot of simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_expectation_value
QFT.snapshot_expectation_value(label, op, qubits, single_shot=False, variance=False)
Take a snapshot of expectation value <O> of an Operator.
Parameters
- label (str) – a snapshot label to report the result
- op (Operator) – operator to snapshot
- qubits (list) – the qubits to snapshot.
- single_shot (bool) – return list for each shot rather than average [Default: False]
- variance (bool) – compute variance of probabilities [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_probabilities
QFT.snapshot_probabilities(label, qubits, variance=False)
Take a probability snapshot of the simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list) – the qubits to snapshot.
- variance (bool) – compute variance of probabilities [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_stabilizer
QFT.snapshot_stabilizer(label)
Take a stabilizer snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
snapshot_statevector
QFT.snapshot_statevector(label)
Take a statevector snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
squ
QFT.squ(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False, *, u=None)
Decompose an arbitrary 2*2 unitary into three rotation gates.
Note that the decomposition is up to a global phase shift. (This is a well known decomposition, which can be found for example in Nielsen and Chuang’s book “Quantum computation and quantum information”.)
Parameters
- unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).
- qubit (QuantumRegister |Qubit) – The qubit which the gate is acting on.
- mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: “ZYZ” (default)
- up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u’ is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u’)
- u (ndarray) – Deprecated, use
unitary_matrix
instead.
Returns
The single-qubit unitary instruction attached to the circuit.
Return type
Raises
QiskitError – if the format is wrong; if the array u is not unitary
swap
QFT.swap(qubit1, qubit2)
Apply SwapGate
.
t
QFT.t(qubit, *, q=None)
Apply TGate
.
tdg
QFT.tdg(qubit, *, q=None)
Apply TdgGate
.
to_gate
QFT.to_gate(parameter_map=None)
Create a Gate out of this circuit.
Parameters
parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the gate. If None, existing circuit parameters will also parameterize the gate.
Returns
a composite gate encapsulating this circuit (can be decomposed back)
Return type
to_instruction
QFT.to_instruction(parameter_map=None)
Create an Instruction out of this circuit.
Parameters
parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction.
Returns
a composite instruction encapsulating this circuit (can be decomposed back)
Return type
toffoli
QFT.toffoli(control_qubit1, control_qubit2, target_qubit, *, ctl1=None, ctl2=None, tgt=None)
Apply CCXGate
.
u1
QFT.u1(theta, qubit, *, q=None)
Apply U1Gate
.
u2
QFT.u2(phi, lam, qubit, *, q=None)
Apply U2Gate
.
u3
QFT.u3(theta, phi, lam, qubit, *, q=None)
Apply U3Gate
.
uc
QFT.uc(gate_list, q_controls, q_target, up_to_diagonal=False)
Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.
The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.
Parameters
- gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array
- q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on
- q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.
- up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u’ is implemented such that there exists a diagonal gate d with u = d.dot(u’), where the unitary u describes the uniformly controlled gate
Returns
the uniformly controlled gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucg
QFT.ucg(angle_list, q_controls, q_target, up_to_diagonal=False)
Deprecated version of uc.
ucrx
QFT.ucrx(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list) – list of (real) rotation angles
- q_controls (QuantumRegister|list) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRx(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRx(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucry
QFT.ucry(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRy(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRy(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucrz
QFT.ucrz(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles [a_0,…,a_{2^k-1}]
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the rotation Rz(a_0)is performed if q[1] and q[2] are in the state zero, the rotation Rz(a_1) is performed if q[1] is in the state one and q[2] is in the state zero, and so on
- q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucx
QFT.ucx(angle_list, q_controls, q_target)
Deprecated version of ucrx.
ucy
QFT.ucy(angle_list, q_controls, q_target)
Deprecated version of ucry.
ucz
QFT.ucz(angle_list, q_controls, q_target)
Deprecated version of ucrz.
unitary
QFT.unitary(obj, qubits, label=None)
Apply unitary gate to q.
width
QFT.width()
Return number of qubits plus clbits in circuit.
Returns
Width of circuit.
Return type
int
x
QFT.x(qubit, *, label=None, ctrl_state=None, q=None)
Apply XGate
.
y
QFT.y(qubit, *, q=None)
Apply YGate
.
z
QFT.z(qubit, *, q=None)
Apply ZGate
.