LinearSystemMatrix
class LinearSystemMatrix(num_state_qubits, tolerance, evolution_time, name='ls_matrix')
Bases: qiskit.circuit.library.blueprintcircuit.BlueprintCircuit
, abc.ABC
Base class for linear system matrices.
Parameters
- num_state_qubits (
int
) – the number of qubits where the unitary acts. - tolerance (
float
) – the accuracy desired for the approximation - evolution_time (
float
) – the time of the Hamiltonian simulation - name (
str
) – The name of the object.
Methods
add_bits
LinearSystemMatrix.add_bits(bits)
Add Bits to the circuit.
Return type
None
add_calibration
LinearSystemMatrix.add_calibration(gate, qubits, schedule, params=None)
Register a low-level, custom pulse definition for the given gate.
Parameters
- gate (Union[Gate, str]) – Gate information.
- qubits (Union[int, Tuple[int]]) – List of qubits to be measured.
- schedule (Schedule) – Schedule information.
- params (Optional[List[Union[float, Parameter]]]) – A list of parameters.
Raises
Exception – if the gate is of type string and params is None.
Return type
None
add_register
LinearSystemMatrix.add_register(*regs)
Add registers.
Return type
None
append
LinearSystemMatrix.append(instruction, qargs=None, cargs=None)
Append one or more instructions to the end of the circuit, modifying the circuit in place. Expands qargs and cargs.
Parameters
- instruction (qiskit.circuit.Instruction) – Instruction instance to append
- qargs (list(argument)) – qubits to attach instruction to
- cargs (list(argument)) – clbits to attach instruction to
Returns
a handle to the instruction that was just added
Return type
Raises
- CircuitError – if object passed is a subclass of Instruction
- CircuitError – if object passed is neither subclass nor an instance of Instruction
assign_parameters
LinearSystemMatrix.assign_parameters(parameters, inplace=False)
Assign parameters to new parameters or values.
The keys of the parameter dictionary must be Parameter instances in the current circuit. The values of the dictionary can either be numeric values or new parameter objects. The values can be assigned to the current circuit object or to a copy of it.
Parameters
- parameters (dict or iterable) – Either a dictionary or iterable specifying the new parameter values. If a dict, it specifies the mapping from
current_parameter
tonew_parameter
, wherenew_parameter
can be a new parameter object or a numeric value. If an iterable, the elements are assigned to the existing parameters in the order ofQuantumCircuit.parameters
. - inplace (bool) – If False, a copy of the circuit with the bound parameters is returned. If True the circuit instance itself is modified.
Raises
- CircuitError – If parameters is a dict and contains parameters not present in the circuit.
- ValueError – If parameters is a list/array and the length mismatches the number of free parameters in the circuit.
Returns
A copy of the circuit with bound parameters, if inplace
is False, otherwise None.
Return type
Optional(QuantumCircuit)
Examples
Create a parameterized circuit and assign the parameters in-place.
from qiskit.circuit import QuantumCircuit, Parameter
circuit = QuantumCircuit(2)
params = [Parameter('A'), Parameter('B'), Parameter('C')]
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
print('Original circuit:')
print(circuit.draw())
circuit.assign_parameters({params[0]: params[2]}, inplace=True)
print('Assigned in-place:')
print(circuit.draw())
Original circuit:
┌───────┐
q_0: ┤ Ry(A) ├────■────
└───────┘┌───┴───┐
q_1: ─────────┤ Rx(B) ├
└───────┘
Assigned in-place:
┌───────┐
q_0: ┤ Ry(C) ├────■────
└───────┘┌───┴───┐
q_1: ─────────┤ Rx(B) ├
└───────┘
Bind the values out-of-place and get a copy of the original circuit.
from qiskit.circuit import QuantumCircuit, ParameterVector
circuit = QuantumCircuit(2)
params = ParameterVector('P', 2)
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
bound_circuit = circuit.assign_parameters({params[0]: 1, params[1]: 2})
print('Bound circuit:')
print(bound_circuit.draw())
print('The original circuit is unchanged:')
print(circuit.draw())
Bound circuit:
┌───────┐
q_0: ┤ Ry(1) ├────■────
└───────┘┌───┴───┐
q_1: ─────────┤ Rx(2) ├
└───────┘
The original circuit is unchanged:
┌──────────┐
q_0: ┤ Ry(P[0]) ├─────■──────
└──────────┘┌────┴─────┐
q_1: ────────────┤ Rx(P[1]) ├
└──────────┘
barrier
LinearSystemMatrix.barrier(*qargs)
Apply Barrier
. If qargs is empty, applies to all qubits in the circuit.
Returns
handle to the added instructions.
Return type
bind_parameters
LinearSystemMatrix.bind_parameters(values)
Assign numeric parameters to values yielding a new circuit.
To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the assign_parameters()
method.
Parameters
values (dict or iterable) – {parameter: value, …} or [value1, value2, …]
Raises
- CircuitError – If values is a dict and contains parameters not present in the circuit.
- TypeError – If values contains a ParameterExpression.
Returns
copy of self with assignment substitution.
Return type
break_loop
LinearSystemMatrix.break_loop()
Apply BreakLoopOp
.
If you are using the context-manager “builder” forms of if_test()
, for_loop()
or while_loop()
, you can only call this method if you are within a loop context, because otherwise the “resource width” of the operation cannot be determined. This would quickly lead to invalid circuits, and so if you are trying to construct a reusable loop body (without the context managers), you must also use the non-context-manager form of if_test()
and if_else()
. Take care that the BreakLoopOp
instruction must span all the resources of its containing loop, not just the immediate scope.
Return type
InstructionSet
Returns
A handle to the instruction created.
Raises
CircuitError – if this method was called within a builder context, but not contained within a loop.
cast
static LinearSystemMatrix.cast(value, type_)
Best effort to cast value to type. Otherwise, returns the value.
Return type
Union
[~S, ~T]
cbit_argument_conversion
LinearSystemMatrix.cbit_argument_conversion(clbit_representation)
Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.
Parameters
clbit_representation (Object) – representation to expand
Returns
Where each tuple is a classical bit.
Return type
List(tuple)
ccx
LinearSystemMatrix.ccx(control_qubit1, control_qubit2, target_qubit, ctrl_state=None)
Apply CCXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the first control. - control_qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the second control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
ch
LinearSystemMatrix.ch(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CHGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cls_instances
classmethod LinearSystemMatrix.cls_instances()
Return the current number of instances of this class, useful for auto naming.
Return type
int
cls_prefix
classmethod LinearSystemMatrix.cls_prefix()
Return the prefix to use for auto naming.
Return type
str
cnot
LinearSystemMatrix.cnot(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
QuantumCircuit.cx: the same function with a different name.
combine
LinearSystemMatrix.combine(rhs)
DEPRECATED - Returns rhs appended to self if self contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Return self + rhs as a new object.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns a new QuantumCircuit object
Return type
Raises
QiskitError – if the rhs circuit is not compatible
compose
LinearSystemMatrix.compose(other, qubits=None, clbits=None, front=False, inplace=False, wrap=False)
Compose circuit with other
circuit or instruction, optionally permuting wires.
other
can be narrower or of equal width to self
.
Parameters
- other (qiskit.circuit.Instruction orQuantumCircuit) – (sub)circuit or instruction to compose onto self. If not a
QuantumCircuit
, this can be anything thatappend
will accept. - qubits (list[Qubit|int]) – qubits of self to compose onto.
- clbits (list[Clbit|int]) – clbits of self to compose onto.
- front (bool) – If True, front composition will be performed (not implemented yet).
- inplace (bool) – If True, modify the object. Otherwise return composed circuit.
- wrap (bool) – If True, wraps the other circuit into a gate (or instruction, depending on whether it contains only unitary instructions) before composing it onto self.
Returns
the composed circuit (returns None if inplace==True).
Return type
Raises
- CircuitError – if composing on the front.
- QiskitError – if
other
is wider or there are duplicate edge mappings.
Examples:
lhs.compose(rhs, qubits=[3, 2], inplace=True)
.. parsed-literal::
┌───┐ ┌─────┐ ┌───┐
lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├───────────────
├───┤ ┌─┴─┐└─────┘ ├───┤
lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├───────────────
┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
└─────────┘ └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├
┌─┴─┐ ┌─┴─┐ └─────┘
lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├───────────────
└───┘ └───┘
lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════
lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
condition_bounds
abstract LinearSystemMatrix.condition_bounds()
Return lower and upper bounds on the condition number of the matrix.
Return type
Tuple
[float
, float
]
continue_loop
LinearSystemMatrix.continue_loop()
Apply ContinueLoopOp
.
If you are using the context-manager “builder” forms of if_test()
, for_loop()
or while_loop()
, you can only call this method if you are within a loop context, because otherwise the “resource width” of the operation cannot be determined. This would quickly lead to invalid circuits, and so if you are trying to construct a reusable loop body (without the context managers), you must also use the non-context-manager form of if_test()
and if_else()
. Take care that the ContinueLoopOp
instruction must span all the resources of its containing loop, not just the immediate scope.
Return type
InstructionSet
Returns
A handle to the instruction created.
Raises
CircuitError – if this method was called within a builder context, but not contained within a loop.
control
LinearSystemMatrix.control(num_ctrl_qubits=1, label=None, ctrl_state=None)
Control this circuit on num_ctrl_qubits
qubits.
Parameters
- num_ctrl_qubits (int) – The number of control qubits.
- label (str) – An optional label to give the controlled operation for visualization.
- ctrl_state (str or int) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use
2**num_ctrl_qubits - 1
.
Returns
The controlled version of this circuit.
Return type
Raises
CircuitError – If the circuit contains a non-unitary operation and cannot be controlled.
copy
LinearSystemMatrix.copy(name=None)
Copy the circuit.
Parameters
name (str) – name to be given to the copied circuit. If None, then the name stays the same
Returns
a deepcopy of the current circuit, with the specified name
Return type
count_ops
LinearSystemMatrix.count_ops()
Count each operation kind in the circuit.
Returns
a breakdown of how many operations of each kind, sorted by amount.
Return type
OrderedDict
cp
LinearSystemMatrix.cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CPhaseGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The angle of the rotation. - control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
crx
LinearSystemMatrix.crx(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The angle of the rotation. - control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cry
LinearSystemMatrix.cry(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRYGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The angle of the rotation. - control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
crz
LinearSystemMatrix.crz(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRZGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The angle of the rotation. - control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cswap
LinearSystemMatrix.cswap(control_qubit, target_qubit1, target_qubit2, label=None, ctrl_state=None)
Apply CSwapGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - target_qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
csx
LinearSystemMatrix.csx(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CSXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cu
LinearSystemMatrix.cu(theta, phi, lam, gamma, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CUGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - phi (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - lam (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - gamma (
Union
[ParameterExpression
,float
]) – The global phase applied of the U gate, if applied. - control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cu1
LinearSystemMatrix.cu1(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CU1Gate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cu3
LinearSystemMatrix.cu3(theta, phi, lam, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CU3Gate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - phi (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - lam (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cx
LinearSystemMatrix.cx(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cy
LinearSystemMatrix.cy(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CYGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the controls. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
cz
LinearSystemMatrix.cz(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CZGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the controls. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - label (
Optional
[str
]) – The string label of the gate in the circuit. - ctrl_state (
Union
[int
,str
,None
]) – The control state in decimal, or as a bitstring (e.g. ‘1’). Defaults to controlling on the ‘1’ state.
Return type
InstructionSet
Returns
A handle to the instructions created.
dcx
LinearSystemMatrix.dcx(qubit1, qubit2)
Apply DCXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to. - qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
decompose
LinearSystemMatrix.decompose(gates_to_decompose=None)
Call a decomposition pass on this circuit, to decompose one level (shallow decompose).
Parameters
gates_to_decompose (str or list(str)) – optional subset of gates to decompose. Defaults to all gates in circuit.
Returns
a circuit one level decomposed
Return type
delay
LinearSystemMatrix.delay(duration, qarg=None, unit='dt')
Apply Delay
. If qarg is None, applies to all qubits. When applying to multiple qubits, delays with the same duration will be created.
Parameters
- duration (int or float or ParameterExpression) – duration of the delay.
- qarg (Object) – qubit argument to apply this delay.
- unit (str) – unit of the duration. Supported units: ‘s’, ‘ms’, ‘us’, ‘ns’, ‘ps’, ‘dt’. Default is
dt
, i.e. integer time unit depending on the target backend.
Returns
handle to the added instructions.
Return type
Raises
CircuitError – if arguments have bad format.
depth
LinearSystemMatrix.depth(*args, **kwargs)
Return circuit depth (i.e., length of critical path).
Parameters
filter_function (callable) – a function to filter out some instructions. Should take as input a tuple of (Instruction, list(Qubit), list(Clbit)). By default filters out “directives”, such as barrier or snapshot.
Returns
Depth of circuit.
Return type
int
Notes
The circuit depth and the DAG depth need not be the same.
diagonal
LinearSystemMatrix.diagonal(diag, qubit)
Attach a diagonal gate to a circuit.
The decomposition is based on Theorem 7 given in “Synthesis of Quantum Logic Circuits” by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).
Parameters
- diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries
- qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)
Returns
the diagonal gate which was attached to the circuit.
Return type
Raises
QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits
draw
LinearSystemMatrix.draw(*args, **kwargs)
Draw the quantum circuit. Use the output parameter to choose the drawing format:
text: ASCII art TextDrawing that can be printed in the console.
matplotlib: images with color rendered purely in Python.
latex: high-quality images compiled via latex.
latex_source: raw uncompiled latex output.
Parameters
- output (str) – select the output method to use for drawing the circuit. Valid choices are
text
,mpl
,latex
,latex_source
. By default the text drawer is used unless the user config file (usually~/.qiskit/settings.conf
) has an alternative backend set as the default. For example,circuit_drawer = latex
. If the output kwarg is set, that backend will always be used over the default in the user config file. - scale (float) – scale of image to draw (shrink if < 1.0). Only used by the mpl, latex and latex_source outputs. Defaults to 1.0.
- filename (str) – file path to save image to. Defaults to None.
- style (dict or str) – dictionary of style or file name of style json file. This option is only used by the mpl or latex output type. If style is a str, it is used as the path to a json file which contains a style dict. The file will be opened, parsed, and then any style elements in the dict will replace the default values in the input dict. A file to be loaded must end in
.json
, but the name entered here can omit.json
. For example,style='iqx.json'
orstyle='iqx'
. If style is a dict and the'name'
key is set, that name will be used to load a json file, followed by loading the other items in the style dict. For example,style={'name': 'iqx'}
. If style is not a str and name is not a key in the style dict, then the default value from the user config file (usually~/.qiskit/settings.conf
) will be used, for example,circuit_mpl_style = iqx
. If none of these are set, the default style will be used. The search path for style json files can be specified in the user config, for example,circuit_mpl_style_path = /home/user/styles:/home/user
. See:DefaultStyle
for more information on the contents. - interactive (bool) – when set to true, show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored. Defaults to False.
- reverse_bits (bool) – when set to True, reverse the bit order inside registers for the output visualization. Defaults to False.
- plot_barriers (bool) – enable/disable drawing barriers in the output circuit. Defaults to True.
- justify (string) – options are
left
,right
ornone
. If anything else is supplied, it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option.none
results in each gate being placed in its own column. - vertical_compression (string) –
high
,medium
orlow
. It merges the lines generated by the text output so the drawing will take less vertical room. Default ismedium
. Only used by the text output, will be silently ignored otherwise. - idle_wires (bool) – include idle wires (wires with no circuit elements) in output visualization. Default is True.
- with_layout (bool) – include layout information, with labels on the physical layout. Default is True.
- fold (int) – sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil.get_terminal_size()
. However, if running in jupyter, the default line length is set to 80 characters. In mpl, it is the number of (visual) layers before folding. Default is 25. - ax (matplotlib.axes.Axes) – Only used by the mpl backend. An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified there will be no returned Figure since it is redundant.
- initial_state (bool) – optional. Adds
|0>
in the beginning of the wire. Default is False. - cregbundle (bool) – optional. If set True, bundle classical registers. Default is True.
Returns
TextDrawing
or matplotlib.figure
or PIL.Image
or str
:
-
TextDrawing (output=’text’)
A drawing that can be printed as ascii art.
-
matplotlib.figure.Figure (output=’mpl’)
A matplotlib figure object for the circuit diagram.
-
PIL.Image (output=’latex’)
An in-memory representation of the image of the circuit diagram.
-
str (output=’latex_source’)
The LaTeX source code for visualizing the circuit diagram.
Raises
- VisualizationError – when an invalid output method is selected
- ImportError – when the output methods requires non-installed libraries.
Example
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.tools.visualization import circuit_drawer
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
ecr
LinearSystemMatrix.ecr(qubit1, qubit2)
Apply ECRGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubits to apply the gate to. - qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubits to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
eigs_bounds
abstract LinearSystemMatrix.eigs_bounds()
Return lower and upper bounds on the eigenvalues of the matrix.
Return type
Tuple
[float
, float
]
extend
LinearSystemMatrix.extend(rhs)
DEPRECATED - Append QuantumCircuit to the RHS if it contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Modify and return self.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns this QuantumCircuit object (which has been modified)
Return type
Raises
QiskitError – if the rhs circuit is not compatible
find_bit
LinearSystemMatrix.find_bit(bit)
Find locations in the circuit which can be used to reference a given Bit
.
Parameters
bit (Bit) – The bit to locate.
Returns
A 2-tuple. The first element (index
)
contains the index at which the Bit
can be found (in either qubits
, clbits
, depending on its type). The second element (registers
) is a list of (register, index)
pairs with an entry for each Register
in the circuit which contains the Bit
(and the index in the Register
at which it can be found).
Return type
namedtuple(int, List[Tuple(Register, int)])
Notes
The circuit index of an AncillaQubit
will be its index in qubits
, not ancillas
.
Raises
- CircuitError – If the supplied
Bit
was of an unknown type. - CircuitError – If the supplied
Bit
could not be found on the circuit.
for_loop
LinearSystemMatrix.for_loop(indexset, loop_parameter=None, body=None, qubits=None, clbits=None, *, label=None)
Create a for
loop on this circuit.
There are two forms for calling this function. If called with all its arguments (with the possible exception of label
), it will create a ForLoopOp
with the given body
. If body
(and qubits
and clbits
) are not passed, then this acts as a context manager, which, when entered, provides a loop variable (unless one is given, in which case it will be reused) and will automatically build a ForLoopOp
when the scope finishes. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.
For example:
from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 1)
with qc.for_loop(range(5)) as i:
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
qc.break_loop().c_if(0, True)
Parameters
-
indexset (Iterable[int]) – A collection of integers to loop over. Always necessary.
-
loop_parameter (Optional[Parameter]) –
The parameter used within
body
to which the values fromindexset
will be assigned. In the context-manager form, if this argument is not supplied, then a loop parameter will be allocated for you and returned as the value of thewith
statement. This will only be bound into the circuit if it is used within the body.If this argument is
None
in the manual form of this method,body
will be repeated once for each of the items inindexset
but their values will be ignored. -
body (Optional[QuantumCircuit]) – The loop body to be repeatedly executed. Omit this to use the context-manager mode.
-
qubits (Optional[Sequence[QubitSpecifier]]) – The circuit qubits over which the loop body should be run. Omit this to use the context-manager mode.
-
clbits (Optional[Sequence[ClbitSpecifier]]) – The circuit clbits over which the loop body should be run. Omit this to use the context-manager mode.
-
label (Optional[str]) – The string label of the instruction in the circuit.
Returns
depending on the call signature, either a context manager for creating the for loop (it will automatically be added to the circuit at the end of the block), or an InstructionSet
handle to the appended loop operation.
Return type
InstructionSet or ForLoopContext
Raises
CircuitError – if an incorrect calling convention is used.
fredkin
LinearSystemMatrix.fredkin(control_qubit, target_qubit1, target_qubit2)
Apply CSwapGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the control. - target_qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - target_qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate.
Return type
InstructionSet
Returns
A handle to the instructions created.
QuantumCircuit.cswap: the same function with a different name.
from_qasm_file
static LinearSystemMatrix.from_qasm_file(path)
Take in a QASM file and generate a QuantumCircuit object.
Parameters
path (str) – Path to the file for a QASM program
Returns
The QuantumCircuit object for the input QASM
Return type
from_qasm_str
static LinearSystemMatrix.from_qasm_str(qasm_str)
Take in a QASM string and generate a QuantumCircuit object.
Parameters
qasm_str (str) – A QASM program string
Returns
The QuantumCircuit object for the input QASM
Return type
get_instructions
LinearSystemMatrix.get_instructions(name)
Get instructions matching name.
Parameters
name (str) – The name of instruction to.
Returns
list of (instruction, qargs, cargs).
Return type
list(tuple)
h
LinearSystemMatrix.h(qubit)
Apply HGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
hamiltonian
LinearSystemMatrix.hamiltonian(operator, time, qubits, label=None)
Apply hamiltonian evolution to qubits.
has_register
LinearSystemMatrix.has_register(register)
Test if this circuit has the register r.
Parameters
register (Register) – a quantum or classical register.
Returns
True if the register is contained in this circuit.
Return type
bool
i
LinearSystemMatrix.i(qubit)
Apply IGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
id
LinearSystemMatrix.id(qubit)
Apply IGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
QuantumCircuit.i: the same function.
if_else
LinearSystemMatrix.if_else(condition, true_body, false_body, qubits, clbits, label=None)
Apply IfElseOp
.
This method does not have an associated context-manager form, because it is already handled by the if_test()
method. You can use the else
part of that with something such as:
from qiskit.circuit import QuantumCircuit, Qubit, Clbit
bits = [Qubit(), Qubit(), Clbit()]
qc = QuantumCircuit(bits)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
with qc.if_test((bits[2], 0)) as else_:
qc.h(0)
with else_:
qc.x(0)
Parameters
- condition (
Union
[Tuple
[ClassicalRegister
,int
],Tuple
[Clbit
,int
],Tuple
[Clbit
,bool
]]) – A condition to be evaluated at circuit runtime which, if true, will trigger the evaluation oftrue_body
. Can be specified as either a tuple of aClassicalRegister
to be tested for equality with a givenint
, or as a tuple of aClbit
to be compared to either abool
or anint
. - true_body (
QuantumCircuit
) – The circuit body to be run ifcondition
is true. - false_body (
QuantumCircuit
) – The circuit to be run ifcondition
is false. - qubits (
Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]]) – The circuit qubits over which the if/else should be run. - clbits (
Sequence
[Union
[Clbit
,ClassicalRegister
,int
,slice
,Sequence
[Union
[Clbit
,int
]]]]) – The circuit clbits over which the if/else should be run. - label (
Optional
[str
]) – The string label of the instruction in the circuit.
Raises
CircuitError – If the provided condition references Clbits outside the enclosing circuit.
Return type
InstructionSet
Returns
A handle to the instruction created.
if_test
LinearSystemMatrix.if_test(condition, true_body=None, qubits=None, clbits=None, *, label=None)
Create an if
statement on this circuit.
There are two forms for calling this function. If called with all its arguments (with the possible exception of label
), it will create a IfElseOp
with the given true_body
, and there will be no branch for the false
condition (see also the if_else()
method). However, if true_body
(and qubits
and clbits
) are not passed, then this acts as a context manager, which can be used to build if
statements. The return value of the with
statement is a chainable context manager, which can be used to create subsequent else
blocks. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.
For example:
from qiskit.circuit import QuantumCircuit, Qubit, Clbit
bits = [Qubit(), Qubit(), Qubit(), Clbit(), Clbit()]
qc = QuantumCircuit(bits)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 1)
with qc.if_test((bits[3], 0)) as else_:
qc.x(2)
with else_:
qc.h(2)
qc.z(2)
Parameters
- condition (Tuple[Union[ClassicalRegister, Clbit], int]) – A condition to be evaluated at circuit runtime which, if true, will trigger the evaluation of
true_body
. Can be specified as either a tuple of aClassicalRegister
to be tested for equality with a givenint
, or as a tuple of aClbit
to be compared to either abool
or anint
. - true_body (Optional[QuantumCircuit]) – The circuit body to be run if
condition
is true. - qubits (Optional[Sequence[QubitSpecifier]]) – The circuit qubits over which the if/else should be run.
- clbits (Optional[Sequence[ClbitSpecifier]]) – The circuit clbits over which the if/else should be run.
- label (Optional[str]) – The string label of the instruction in the circuit.
Returns
depending on the call signature, either a context manager for creating the if
block (it will automatically be added to the circuit at the end of the block), or an InstructionSet
handle to the appended conditional operation.
Return type
InstructionSet or IfContext
Raises
- CircuitError – If the provided condition references Clbits outside the enclosing circuit.
- CircuitError – if an incorrect calling convention is used.
Returns
A handle to the instruction created.
initialize
LinearSystemMatrix.initialize(params, qubits=None)
Initialize qubits in a specific state.
Qubit initialization is done by first resetting the qubits to followed by calling qiskit.extensions.StatePreparation
class to prepare the qubits in a specified state. Both these steps are included in the qiskit.extensions.Initialize
instruction.
Parameters
-
params (str or list or int) –
- str: labels of basis states of the Pauli eigenstates Z, X, Y. See
Statevector.from_label()
. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label ‘01’ initializes the qubit zero to and the qubit one to . - list: vector of complex amplitudes to initialize to.
- int: an integer that is used as a bitmap indicating which qubits to initialize to . Example: setting params to 5 would initialize qubit 0 and qubit 2 to and qubit 1 to .
- str: labels of basis states of the Pauli eigenstates Z, X, Y. See
-
qubits (QuantumRegister or int) –
- QuantumRegister: A list of qubits to be initialized [Default: None].
- int: Index of qubit to be initialized [Default: None].
- list: Indexes of qubits to be initialized [Default: None].
Returns
a handle to the instruction that was just initialized
Return type
Examples
Prepare a qubit in the state .
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.initialize([1/np.sqrt(2), -1/np.sqrt(2)], 0)
circuit.draw()
┌──────────────────────────────┐
q: ┤ Initialize(0.70711,-0.70711) ├
└──────────────────────────────┘
output:
┌──────────────────────────────┐
q_0: ┤ Initialize(0.70711,-0.70711) ├
└──────────────────────────────┘
Initialize from a string two qubits in the state . The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in Statevector.from_label()
.
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.initialize('01', circuit.qubits)
circuit.draw()
┌──────────────────┐
q_0: ┤0 ├
│ Initialize(0,1) │
q_1: ┤1 ├
└──────────────────┘
output:
┌──────────────────┐
q_0: ┤0 ├
│ Initialize(0,1) │
q_1: ┤1 ├
└──────────────────┘
Initialize two qubits from an array of complex amplitudes .. jupyter-execute:
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits)
circuit.draw()
output:
┌────────────────────────────────────┐
q_0: ┤0 ├
│ Initialize(0,0.70711,-0.70711j,0) │
q_1: ┤1 ├
└────────────────────────────────────┘
inverse
LinearSystemMatrix.inverse()
Invert (take adjoint of) this circuit.
This is done by recursively inverting all gates.
Returns
the inverted circuit
Return type
Raises
CircuitError – if the circuit cannot be inverted.
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌───┐
q_0: ──────■──────┤ H ├
┌─────┴─────┐└───┘
q_1: ┤ RX(-1.57) ├─────
└───────────┘
iso
LinearSystemMatrix.iso(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None, epsilon=1e-10)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
- epsilon (float) – error tolerance of calculations. Default is epsilon = _EPS.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
isometry
LinearSystemMatrix.isometry(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None, epsilon=1e-10)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
- epsilon (float) – error tolerance of calculations. Default is epsilon = _EPS.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
iswap
LinearSystemMatrix.iswap(qubit1, qubit2)
Apply iSwapGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubits to apply the gate to. - qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubits to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
mcp
LinearSystemMatrix.mcp(lam, control_qubits, target_qubit)
Apply MCPhaseGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- lam (
Union
[ParameterExpression
,float
]) – The angle of the rotation. - control_qubits (
Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]]) – The qubits used as the controls. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate.
Return type
InstructionSet
Returns
A handle to the instructions created.
mcrx
LinearSystemMatrix.mcrx(theta, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled X rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.
- theta (float) – angle theta
- q_controls (QuantumRegister or list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mcry
LinearSystemMatrix.mcry(theta, q_controls, q_target, q_ancillae=None, mode=None, use_basis_gates=False)
Apply Multiple-Controlled Y rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.
- mode (string) – The implementation mode to use
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mcrz
LinearSystemMatrix.mcrz(lam, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled Z rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrz gate on.
- lam (float) – angle lambda
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mct
LinearSystemMatrix.mct(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are:
- ‘noancilla’: Requires 0 ancilla qubits.
- ‘recursion’: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0.
- ‘v-chain’: Requires 2 less ancillas than the number of control qubits.
- ‘v-chain-dirty’: Same as for the clean ancillas (but the circuit will be longer).
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubits (
Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]]) – The qubits used as the controls. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - ancilla_qubits (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]],Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]],None
]) – The qubits used as the ancillae, if the mode requires them. - mode (
str
) – The choice of mode, explained further above.
Return type
InstructionSet
Returns
A handle to the instructions created.
Raises
- ValueError – if the given mode is not known, or if too few ancilla qubits are passed.
- AttributeError – if no ancilla qubits are passed, but some are needed.
QuantumCircuit.mcx: the same gate with a different name.
mcu1
LinearSystemMatrix.mcu1(lam, control_qubits, target_qubit)
Apply MCU1Gate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- lam (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - control_qubits (
Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]]) – The qubits used as the controls. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate.
Return type
InstructionSet
Returns
A handle to the instructions created.
mcx
LinearSystemMatrix.mcx(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are:
- ‘noancilla’: Requires 0 ancilla qubits.
- ‘recursion’: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0.
- ‘v-chain’: Requires 2 less ancillas than the number of control qubits.
- ‘v-chain-dirty’: Same as for the clean ancillas (but the circuit will be longer).
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubits (
Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]]) – The qubits used as the controls. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate. - ancilla_qubits (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]],Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]],None
]) – The qubits used as the ancillae, if the mode requires them. - mode (
str
) – The choice of mode, explained further above.
Return type
InstructionSet
Returns
A handle to the instructions created.
Raises
- ValueError – if the given mode is not known, or if too few ancilla qubits are passed.
- AttributeError – if no ancilla qubits are passed, but some are needed.
measure
LinearSystemMatrix.measure(qubit, cbit)
Measure quantum bit into classical bit (tuples).
Parameters
- qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – qubit to measure. - cbit (
Union
[Clbit
,ClassicalRegister
,int
,slice
,Sequence
[Union
[Clbit
,int
]]]) – classical bit to place the measurement in.
Returns
handle to the added instructions.
Return type
Raises
CircuitError – if arguments have bad format.
measure_active
LinearSystemMatrix.measure_active(inplace=True)
Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
measure_all
LinearSystemMatrix.measure_all(inplace=True, add_bits=True)
Adds measurement to all qubits.
By default, adds new classical bits in a ClassicalRegister
to store these measurements. If add_bits=False
, the results of the measurements will instead be stored in the already existing classical bits, with qubit n
being measured into classical bit n
.
Returns a new circuit with measurements if inplace=False
.
Parameters
- inplace (bool) – All measurements inplace or return new circuit.
- add_bits (bool) – Whether to add new bits to store the results.
Returns
Returns circuit with measurements when inplace=False
.
Return type
Raises
CircuitError – if add_bits=False
but there are not enough classical bits.
ms
LinearSystemMatrix.ms(theta, qubits)
Apply MSGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The angle of the rotation. - qubits (
Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]]) – The qubits to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
num_connected_components
LinearSystemMatrix.num_connected_components(unitary_only=False)
How many non-entangled subcircuits can the circuit be factored to.
Parameters
unitary_only (bool) – Compute only unitary part of graph.
Returns
Number of connected components in circuit.
Return type
int
num_nonlocal_gates
LinearSystemMatrix.num_nonlocal_gates()
Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
num_tensor_factors
LinearSystemMatrix.num_tensor_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Notes
This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.
Return type
int
num_unitary_factors
LinearSystemMatrix.num_unitary_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Return type
int
p
LinearSystemMatrix.p(theta, qubit)
Apply PhaseGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – THe angle of the rotation. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
pauli
LinearSystemMatrix.pauli(pauli_string, qubits)
Apply PauliGate
.
Parameters
- pauli_string (
str
) – A string representing the Pauli operator to apply, e.g. ‘XX’. - qubits (
Sequence
[Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]]) – The qubits to apply this gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
power
abstract LinearSystemMatrix.power(power, matrix_power=False)
Build powers of the circuit.
Parameters
- power (
int
) – The power to raise this circuit to. - matrix_power (
bool
) – If True, the circuit is converted to a matrix and then the matrix power is computed. If False, andpower
is a positive integer, the implementation defaults torepeat
.
Return type
QuantumCircuit
Returns
The quantum circuit implementing powers of the unitary.
prepare_state
LinearSystemMatrix.prepare_state(state, qubits=None, label=None)
Prepare qubits in a specific state.
This class implements a state preparing unitary. Unlike qiskit.extensions.Initialize
it does not reset the qubits first.
Parameters
-
state (str or list or int or Statevector) –
- Statevector: Statevector to initialize to.
- str: labels of basis states of the Pauli eigenstates Z, X, Y. See
Statevector.from_label()
. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label ‘01’ initializes the qubit zero to and the qubit one to . - list: vector of complex amplitudes to initialize to.
- int: an integer that is used as a bitmap indicating which qubits to initialize to . Example: setting params to 5 would initialize qubit 0 and qubit 2 to and qubit 1 to .
-
qubits (QuantumRegister or int) –
- QuantumRegister: A list of qubits to be initialized [Default: None].
- int: Index of qubit to be initialized [Default: None].
- list: Indexes of qubits to be initialized [Default: None].
-
label (str) – An optional label for the gate
Returns
a handle to the instruction that was just initialized
Return type
Examples
Prepare a qubit in the state .
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.prepare_state([1/np.sqrt(2), -1/np.sqrt(2)], 0)
circuit.draw()
┌─────────────────────────────────────┐
q: ┤ State Preparation(0.70711,-0.70711) ├
└─────────────────────────────────────┘
output:
┌─────────────────────────────────────┐
q_0: ┤ State Preparation(0.70711,-0.70711) ├
└─────────────────────────────────────┘
Prepare from a string two qubits in the state . The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in Statevector.from_label()
.
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.prepare_state('01', circuit.qubits)
circuit.draw()
┌─────────────────────────┐
q_0: ┤0 ├
│ State Preparation(0,1) │
q_1: ┤1 ├
└─────────────────────────┘
output:
┌─────────────────────────┐
q_0: ┤0 ├
│ State Preparation(0,1) │
q_1: ┤1 ├
└─────────────────────────┘
Initialize two qubits from an array of complex amplitudes .. jupyter-execute:
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.prepare_state([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits)
circuit.draw()
output:
┌───────────────────────────────────────────┐
q_0: ┤0 ├
│ State Preparation(0,0.70711,-0.70711j,0) │
q_1: ┤1 ├
└───────────────────────────────────────────┘
qasm
LinearSystemMatrix.qasm(formatted=False, filename=None, encoding=None)
Return OpenQASM string.
Parameters
- formatted (bool) – Return formatted Qasm string.
- filename (str) – Save Qasm to file with name ‘filename’.
- encoding (str) – Optionally specify the encoding to use for the output file if
filename
is specified. By default this is set to the system’s default encoding (ie whateverlocale.getpreferredencoding()
returns) and can be set to any valid codec or alias from stdlib’s codec module
Returns
If formatted=False.
Return type
str
Raises
- MissingOptionalLibraryError – If pygments is not installed and
formatted
isTrue
. - QasmError – If circuit has free parameters.
qbit_argument_conversion
LinearSystemMatrix.qbit_argument_conversion(qubit_representation)
Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.
Parameters
qubit_representation (Object) – representation to expand
Returns
the resolved instances of the qubits.
Return type
List(Qubit)
qubit_duration
LinearSystemMatrix.qubit_duration(*qubits)
Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Parameters
*qubits – Qubits within self
to include.
Return type
float
Returns
Return the duration between the first start and last stop time of non-delay instructions
qubit_start_time
LinearSystemMatrix.qubit_start_time(*qubits)
Return the start time of the first instruction, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Return 0 if there are no instructions over qubits
Parameters
- *qubits – Qubits within
self
to include. Integers are allowed for qubits, indicating - of self.qubits. (indices) –
Return type
float
Returns
Return the start time of the first instruction, excluding delays, over the qubits
Raises
CircuitError – if self
is a not-yet scheduled circuit.
qubit_stop_time
LinearSystemMatrix.qubit_stop_time(*qubits)
Return the stop time of the last instruction, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Return 0 if there are no instructions over qubits
Parameters
- *qubits – Qubits within
self
to include. Integers are allowed for qubits, indicating - of self.qubits. (indices) –
Return type
float
Returns
Return the stop time of the last instruction, excluding delays, over the qubits
Raises
CircuitError – if self
is a not-yet scheduled circuit.
r
LinearSystemMatrix.r(theta, phi, qubit)
Apply RGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The angle of the rotation. - phi (
Union
[ParameterExpression
,float
]) – The angle of the axis of rotation in the x-y plane. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
rcccx
LinearSystemMatrix.rcccx(control_qubit1, control_qubit2, control_qubit3, target_qubit)
Apply RC3XGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the first control. - control_qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the second control. - control_qubit3 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the third control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate.
Return type
InstructionSet
Returns
A handle to the instructions created.
rccx
LinearSystemMatrix.rccx(control_qubit1, control_qubit2, target_qubit)
Apply RCCXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the first control. - control_qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the second control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate.
Return type
InstructionSet
Returns
A handle to the instructions created.
remove_final_measurements
LinearSystemMatrix.remove_final_measurements(inplace=True)
Removes final measurements and barriers on all qubits if they are present. Deletes the classical registers that were used to store the values from these measurements that become idle as a result of this operation, and deletes classical bits that are referenced only by removed registers, or that aren’t referenced at all but have become idle as a result of this operation.
Measurements and barriers are considered final if they are followed by no other operations (aside from other measurements or barriers.)
Parameters
inplace (bool) – All measurements removed inplace or return new circuit.
Returns
Returns the resulting circuit when inplace=False
, else None.
Return type
repeat
LinearSystemMatrix.repeat(reps)
Repeat this circuit reps
times.
Parameters
reps (int) – How often this circuit should be repeated.
Returns
A circuit containing reps
repetitions of this circuit.
Return type
reset
LinearSystemMatrix.reset(qubit)
Reset the quantum bit(s) to their default state.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – qubit(s) to reset.
Returns
handle to the added instruction.
Return type
reverse_bits
LinearSystemMatrix.reverse_bits()
Return a circuit with the opposite order of wires.
The circuit is “vertically” flipped. If a circuit is defined over multiple registers, the resulting circuit will have the same registers but with their order flipped.
This method is useful for converting a circuit written in little-endian convention to the big-endian equivalent, and vice versa.
Returns
the circuit with reversed bit order.
Return type
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌──────────┐
q_0: ─────┤ RX(1.57) ├
┌───┐└────┬─────┘
q_1: ┤ H ├─────■──────
└───┘
reverse_ops
LinearSystemMatrix.reverse_ops()
Reverse the circuit by reversing the order of instructions.
This is done by recursively reversing all instructions. It does not invert (adjoint) any gate.
Returns
the reversed circuit.
Return type
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌───┐
q_0: ─────■──────┤ H ├
┌────┴─────┐└───┘
q_1: ┤ RX(1.57) ├─────
└──────────┘
rv
LinearSystemMatrix.rv(vx, vy, vz, qubit)
Apply RVGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Rotation around an arbitrary rotation axis , where is the angle of rotation in radians.
Parameters
- vx (
Union
[ParameterExpression
,float
]) – x-compenent of the rotation axis. - vy (
Union
[ParameterExpression
,float
]) – y-compenent of the rotation axis. - vz (
Union
[ParameterExpression
,float
]) – z-compenent of the rotation axis. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
rx
LinearSystemMatrix.rx(theta, qubit, label=None)
Apply RXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to. - label (
Optional
[str
]) – The string label of the gate in the circuit.
Return type
InstructionSet
Returns
A handle to the instructions created.
rxx
LinearSystemMatrix.rxx(theta, qubit1, qubit2)
Apply RXXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The angle of the rotation. - qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to. - qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
ry
LinearSystemMatrix.ry(theta, qubit, label=None)
Apply RYGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to. - label (
Optional
[str
]) – The string label of the gate in the circuit.
Return type
InstructionSet
Returns
A handle to the instructions created.
ryy
LinearSystemMatrix.ryy(theta, qubit1, qubit2)
Apply RYYGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to. - qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
rz
LinearSystemMatrix.rz(phi, qubit)
Apply RZGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- phi (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
rzx
LinearSystemMatrix.rzx(theta, qubit1, qubit2)
Apply RZXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to. - qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
rzz
LinearSystemMatrix.rzz(theta, qubit1, qubit2)
Apply RZZGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to. - qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
s
LinearSystemMatrix.s(qubit)
Apply SGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
save_amplitudes
LinearSystemMatrix.save_amplitudes(params, label='amplitudes', pershot=False, conditional=False)
Save complex statevector amplitudes.
Parameters
- params (List[int] or List[str]) – the basis states to return amplitudes for.
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of amplitudes vectors for each shot of the simulation rather than the a single amplitude vector [Default: False].
- conditional (bool) – if True save the amplitudes vector conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if params is invalid for the specified number of qubits.
save_amplitudes_squared
LinearSystemMatrix.save_amplitudes_squared(params, label='amplitudes_squared', unnormalized=False, pershot=False, conditional=False)
Save squared statevector amplitudes (probabilities).
Parameters
- params (List[int] or List[str]) – the basis states to return amplitudes for.
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
- pershot (bool) – if True save a list of probability vectors for each shot of the simulation rather than the a single amplitude vector [Default: False].
- conditional (bool) – if True save the probability vector conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if params is invalid for the specified number of qubits.
save_clifford
LinearSystemMatrix.save_clifford(label='clifford', pershot=False)
Save the current stabilizer simulator quantum state as a Clifford.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of Cliffords for each shot of the simulation [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_density_matrix
LinearSystemMatrix.save_density_matrix(qubits=None, label='density_matrix', unnormalized=False, pershot=False, conditional=False)
Save the current simulator quantum state as a density matrix.
Parameters
- qubits (list or None) – the qubits to save reduced density matrix on. If None the full density matrix of qubits will be saved [Default: None].
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated density matrix over all shots [Default: False].
- pershot (bool) – if True save a list of density matrices for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the average or pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_expectation_value
LinearSystemMatrix.save_expectation_value(operator, qubits, label='expectation_value', unnormalized=False, pershot=False, conditional=False)
Save the expectation value of a Hermitian operator.
Parameters
- operator (Pauli orSparsePauliOp orOperator) – a Hermitian operator.
- qubits (list) – circuit qubits to apply instruction.
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated expectation value over all shot [Default: False].
- pershot (bool) – if True save a list of expectation values for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the average or pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if the input operator is invalid or not Hermitian.
This method appends a SaveExpectationValue
instruction to the quantum circuit.
save_expectation_value_variance
LinearSystemMatrix.save_expectation_value_variance(operator, qubits, label='expectation_value_variance', unnormalized=False, pershot=False, conditional=False)
Save the expectation value of a Hermitian operator.
Parameters
- operator (Pauli orSparsePauliOp orOperator) – a Hermitian operator.
- qubits (list) – circuit qubits to apply instruction.
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated expectation value and variance over all shot [Default: False].
- pershot (bool) – if True save a list of expectation values and variances for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if the input operator is invalid or not Hermitian.
This method appends a SaveExpectationValueVariance
instruction to the quantum circuit.
save_matrix_product_state
LinearSystemMatrix.save_matrix_product_state(label='matrix_product_state', pershot=False, conditional=False)
Save the current simulator quantum state as a matrix product state.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save the mps for each shot of the simulation [Default: False].
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_probabilities
LinearSystemMatrix.save_probabilities(qubits=None, label='probabilities', unnormalized=False, pershot=False, conditional=False)
Save measurement outcome probabilities vector.
Parameters
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
- pershot (bool) – if True save a list of probabilities for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the probabilities data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_probabilities_dict
LinearSystemMatrix.save_probabilities_dict(qubits=None, label='probabilities', unnormalized=False, pershot=False, conditional=False)
Save measurement outcome probabilities vector.
Parameters
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
- pershot (bool) – if True save a list of probabilities for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the probabilities data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_stabilizer
LinearSystemMatrix.save_stabilizer(label='stabilizer', pershot=False, conditional=False)
Save the current stabilizer simulator quantum state as a StabilizerState.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of StabilizerStates for each shot of the simulation [Default: False].
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_state
LinearSystemMatrix.save_state(label=None, pershot=False, conditional=False)
Save the current simulator quantum state.
Parameters
- label (str or None) – Optional, the key for retrieving saved data from results. If None the key will be the state type of the simulator.
- pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_statevector
LinearSystemMatrix.save_statevector(label='statevector', pershot=False, conditional=False)
Save the current simulator quantum state as a statevector.
Parameters
- pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
- label (str) – the key for retrieving saved data from results.
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_statevector_dict
LinearSystemMatrix.save_statevector_dict(label='statevector', pershot=False, conditional=False)
Save the current simulator quantum state as a statevector as a dict.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_superop
LinearSystemMatrix.save_superop(label='superop', pershot=False)
Save the current state of the superop simulator.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of SuperOp matrices for each shot of the simulation [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_unitary
LinearSystemMatrix.save_unitary(label='unitary', pershot=False)
Save the current state of the unitary simulator.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of unitaries for each shot of the simulation [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
sdg
LinearSystemMatrix.sdg(qubit)
Apply SdgGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
set_density_matrix
LinearSystemMatrix.set_density_matrix(state)
Set the density matrix state of the simulator.
Parameters
state (DensityMatrix) – a density matrix.
Returns
with attached instruction.
Return type
Raises
ExtensionError – If the density matrix is the incorrect size for the current circuit.
set_matrix_product_state
LinearSystemMatrix.set_matrix_product_state(state)
Set the matrix product state of the simulator.
Parameters
state (Tuple[List[Tuple[np.array[complex_t]]]], List[List[float]]) – A matrix_product_state.
Returns
with attached instruction.
Return type
Raises
ExtensionError – If the structure of the state is incorrect
set_stabilizer
LinearSystemMatrix.set_stabilizer(state)
Set the Clifford stabilizer state of the simulator.
Parameters
state (Clifford) – A clifford operator.
Returns
with attached instruction.
Return type
Raises
ExtensionError – If the state is the incorrect size for the current circuit.
set_statevector
LinearSystemMatrix.set_statevector(state)
Set the statevector state of the simulator.
Parameters
state (Statevector) – A state matrix.
Returns
with attached instruction.
Return type
Raises
ExtensionError – If the state is the incorrect size for the current circuit.
set_superop
LinearSystemMatrix.set_superop(state)
Set the superop state of the simulator.
Parameters
state (QuantumChannel) – A CPTP quantum channel.
Returns
with attached instruction.
Return type
Raises
- ExtensionError – If the state is the incorrect size for the current circuit.
- ExtensionError – if the input QuantumChannel is not CPTP.
set_unitary
LinearSystemMatrix.set_unitary(state)
Set the state state of the simulator.
Parameters
state (Operator) – A state matrix.
Returns
with attached instruction.
Return type
Raises
- ExtensionError – If the state is the incorrect size for the current circuit.
- ExtensionError – if the input matrix is not unitary.
size
LinearSystemMatrix.size(*args, **kwargs)
Returns total number of instructions in circuit.
Parameters
filter_function (callable) – a function to filter out some instructions. Should take as input a tuple of (Instruction, list(Qubit), list(Clbit)). By default filters out “directives”, such as barrier or snapshot.
Returns
Total number of gate operations.
Return type
int
snapshot
LinearSystemMatrix.snapshot(label, snapshot_type='statevector', qubits=None, params=None)
Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier). :param label: a snapshot label to report the result :type label: str :param snapshot_type: the type of the snapshot. :type snapshot_type: str :param qubits: the qubits to apply snapshot to [Default: None]. :type qubits: list or None :param params: the parameters for snapshot_type [Default: None]. :type params: list or None
Returns
with attached command
Return type
Raises
ExtensionError – malformed command
snapshot_density_matrix
LinearSystemMatrix.snapshot_density_matrix(label, qubits=None)
Take a density matrix snapshot of simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_density_matrix
circuit method.
snapshot_expectation_value
LinearSystemMatrix.snapshot_expectation_value(label, op, qubits, single_shot=False, variance=False)
Take a snapshot of expectation value <O> of an Operator.
Parameters
- label (str) – a snapshot label to report the result
- op (Operator) – operator to snapshot
- qubits (list) – the qubits to snapshot.
- single_shot (bool) – return list for each shot rather than average [Default: False]
- variance (bool) – compute variance of values [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_expectation_value()
and qiskit.providers.aer.library.save_expectation_value_variance()
circuit methods.
snapshot_probabilities
LinearSystemMatrix.snapshot_probabilities(label, qubits, variance=False)
Take a probability snapshot of the simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list) – the qubits to snapshot.
- variance (bool) – compute variance of probabilities [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_probabilities()
and qiskit.providers.aer.library.save_probabilities_dict()
circuit methods.
snapshot_stabilizer
LinearSystemMatrix.snapshot_stabilizer(label)
Take a stabilizer snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_stabilizer()
circuit method.
snapshot_statevector
LinearSystemMatrix.snapshot_statevector(label)
Take a statevector snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_statevector
circuit method.
squ
LinearSystemMatrix.squ(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False)
Decompose an arbitrary 2*2 unitary into three rotation gates.
Note that the decomposition is up to a global phase shift. (This is a well known decomposition, which can be found for example in Nielsen and Chuang’s book “Quantum computation and quantum information”.)
Parameters
- unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).
- qubit (QuantumRegister orQubit) – The qubit which the gate is acting on.
- mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: “ZYZ” (default)
- up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u’ is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u’)
Returns
The single-qubit unitary instruction attached to the circuit.
Return type
Raises
QiskitError – if the format is wrong; if the array u is not unitary
swap
LinearSystemMatrix.swap(qubit1, qubit2)
Apply SwapGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubits to apply the gate to. - qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubits to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
sx
LinearSystemMatrix.sx(qubit)
Apply SXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
sxdg
LinearSystemMatrix.sxdg(qubit)
Apply SXdgGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
t
LinearSystemMatrix.t(qubit)
Apply TGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
tdg
LinearSystemMatrix.tdg(qubit)
Apply TdgGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
tensor
LinearSystemMatrix.tensor(other, inplace=False)
Tensor self
with other
.
Remember that in the little-endian convention the leftmost operation will be at the bottom of the circuit. See also the docs for more information.
┌────────┐ ┌─────┐ ┌─────┐
q_0: ┤ bottom ├ ⊗ q_0: ┤ top ├ = q_0: ─┤ top ├──
└────────┘ └─────┘ ┌┴─────┴─┐
q_1: ┤ bottom ├
└────────┘
Parameters
- other (QuantumCircuit) – The other circuit to tensor this circuit with.
- inplace (bool) – If True, modify the object. Otherwise return composed circuit.
Examples
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
print(tensored.draw())
┌───┐
q_0: ───┤ X ├───
└───┘
q_1: ─────■─────
┌────┴────┐
q_2: ┤ Ry(0.2) ├
└─────────┘
Returns
The tensored circuit (returns None if inplace==True).
Return type
to_gate
LinearSystemMatrix.to_gate(parameter_map=None, label=None)
Create a Gate out of this circuit.
Parameters
- parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the gate. If None, existing circuit parameters will also parameterize the gate.
- label (str) – Optional gate label.
Returns
a composite gate encapsulating this circuit (can be decomposed back)
Return type
to_instruction
LinearSystemMatrix.to_instruction(parameter_map=None, label=None)
Create an Instruction out of this circuit.
Parameters
- parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction.
- label (str) – Optional gate label.
Returns
a composite instruction encapsulating this circuit (can be decomposed back)
Return type
toffoli
LinearSystemMatrix.toffoli(control_qubit1, control_qubit2, target_qubit)
Apply CCXGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- control_qubit1 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the first control. - control_qubit2 (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) used as the second control. - target_qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) targeted by the gate.
Return type
InstructionSet
Returns
A handle to the instructions created.
QuantumCircuit.ccx: the same gate with a different name.
u
LinearSystemMatrix.u(theta, phi, lam, qubit)
Apply UGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - phi (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - lam (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
u1
LinearSystemMatrix.u1(theta, qubit)
Apply U1Gate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
u2
LinearSystemMatrix.u2(phi, lam, qubit)
Apply U2Gate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- phi (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - lam (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
u3
LinearSystemMatrix.u3(theta, phi, lam, qubit)
Apply U3Gate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- theta (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - phi (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - lam (
Union
[ParameterExpression
,float
]) – The rotation angle of the gate. - qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
uc
LinearSystemMatrix.uc(gate_list, q_controls, q_target, up_to_diagonal=False)
Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.
The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.
Parameters
- gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array
- q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on
- q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.
- up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u’ is implemented such that there exists a diagonal gate d with u = d.dot(u’), where the unitary u describes the uniformly controlled gate
Returns
the uniformly controlled gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucrx
LinearSystemMatrix.ucrx(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list) – list of (real) rotation angles
- q_controls (QuantumRegister|list) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRx(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRx(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucry
LinearSystemMatrix.ucry(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRy(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRy(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucrz
LinearSystemMatrix.ucrz(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles [a_0,…,a_{2^k-1}]
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the rotation Rz(a_0)is performed if q[1] and q[2] are in the state zero, the rotation Rz(a_1) is performed if q[1] is in the state one and q[2] is in the state zero, and so on
- q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
unitary
LinearSystemMatrix.unitary(obj, qubits, label=None)
Apply unitary gate to q.
while_loop
LinearSystemMatrix.while_loop(condition, body=None, qubits=None, clbits=None, *, label=None)
Create a while
loop on this circuit.
There are two forms for calling this function. If called with all its arguments (with the possible exception of label
), it will create a WhileLoopOp
with the given body
. If body
(and qubits
and clbits
) are not passed, then this acts as a context manager, which will automatically build a WhileLoopOp
when the scope finishes. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.
Example usage:
from qiskit.circuit import QuantumCircuit, Clbit, Qubit
bits = [Qubit(), Qubit(), Clbit()]
qc = QuantumCircuit(bits)
with qc.while_loop((bits[2], 0)):
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
Parameters
- condition (Tuple[Union[ClassicalRegister, Clbit], int]) – An equality condition to be checked prior to executing
body
. The left-hand side of the condition must be aClassicalRegister
or aClbit
, and the right-hand side must be an integer or boolean. - body (Optional[QuantumCircuit]) – The loop body to be repeatedly executed. Omit this to use the context-manager mode.
- qubits (Optional[Sequence[Qubit]]) – The circuit qubits over which the loop body should be run. Omit this to use the context-manager mode.
- clbits (Optional[Sequence[Clbit]]) – The circuit clbits over which the loop body should be run. Omit this to use the context-manager mode.
- label (Optional[str]) – The string label of the instruction in the circuit.
Returns
If used in context-manager mode, then this should be used as a with
resource, which will infer the block content and operands on exit. If the full form is used, then this returns a handle to the instructions created.
Return type
InstructionSet or WhileLoopContext
Raises
CircuitError – if an incorrect calling convention is used.
width
LinearSystemMatrix.width()
Return number of qubits plus clbits in circuit.
Returns
Width of circuit.
Return type
int
x
LinearSystemMatrix.x(qubit, label=None)
Apply XGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
- qubit (
Union
[Qubit
,QuantumRegister
,int
,slice
,Sequence
[Union
[Qubit
,int
]]]) – The qubit(s) to apply the gate to. - label (
Optional
[str
]) – The string label of the gate in the circuit.
Return type
InstructionSet
Returns
A handle to the instructions created.
y
LinearSystemMatrix.y(qubit)
Apply YGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
z
LinearSystemMatrix.z(qubit)
Apply ZGate
.
For the full matrix form of this gate, see the underlying gate documentation.
Parameters
qubit (Union
[Qubit
, QuantumRegister
, int
, slice
, Sequence
[Union
[Qubit
, int
]]]) – The qubit(s) to apply the gate to.
Return type
InstructionSet
Returns
A handle to the instructions created.
Attributes
ancillas
Returns a list of ancilla bits in the order that the registers were added.
Return type
List
[AncillaQubit
]
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
Return type
dict
clbits
Returns a list of classical bits in the order that the registers were added.
Return type
List
[Clbit
]
data
evolution_time
Return the time of the evolution.
Return type
float
extension_lib
Default value: 'include "qelib1.inc";'
global_phase
Return the global phase of the circuit in radians.
Return type
Union
[ParameterExpression
, float
]
header
Default value: 'OPENQASM 2.0;'
instances
Default value: 9
metadata
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
Return type
dict
num_ancillas
Return the number of ancilla qubits.
Return type
int
num_clbits
Return number of classical bits.
Return type
int
num_parameters
Return type
int
num_qubits
Return number of qubits.
Return type
int
num_state_qubits
The number of state qubits representing the state .
Return type
int
Returns
The number of state qubits.
parameters
Return type
ParameterView
prefix
Default value: 'circuit'
qregs
A list of the quantum registers associated with the circuit.
qubits
Returns a list of quantum bits in the order that the registers were added.
Return type
List
[Qubit
]
tolerance
Return the error tolerance
Return type
float