Pauli
class Pauli(data=None, x=None, *, z=None, label=None)
Bases: qiskit.quantum_info.operators.symplectic.base_pauli.BasePauli
N-qubit Pauli operator.
This class represents an operator from the full -qubit Pauli group
where and are single-qubit Pauli matrices:
Initialization
A Pauli object can be initialized in several ways:
Pauli(obj)
where
obj
is a Pauli string,Pauli
orScalarOp
operator, or a Pauli gate orQuantumCircuit
containing only Pauli gates.
Pauli((z, x, phase))
where
z
andx
are booleannumpy.ndarrays
andphase
is an integer in[0, 1, 2, 3]
.
Pauli((z, x))
equivalent to
Pauli((z, x, 0))
with trivial phase.
String representation
An -qubit Pauli may be represented by a string consisting of characters from ['I', 'X', 'Y', 'Z']
, and optionally phase coefficient in . For example: XYZ
or '-iZIZ'
.
In the string representation qubit-0 corresponds to the right-most Pauli character, and qubit- to the left-most Pauli character. For example 'XYZ'
represents with 'Z'
on qubit-0, 'Y'
on qubit-1, and 'X'
on qubit-3.
The string representation can be converted to a Pauli
using the class initialization (Pauli('-iXYZ')
). A Pauli
object can be converted back to the string representation using the to_label()
method or str(pauli)
.
Using str
to convert a Pauli
to a string will truncate the returned string for large numbers of qubits while to_label()
will return the full string with no truncation. The default truncation length is 50 characters. The default value can be changed by setting the class __truncate__ attribute to an integer value. If set to 0
no truncation will be performed.
Array Representation
The internal data structure of an -qubit Pauli is two length- boolean vectors , , and an integer defining the Pauli operator
The and arrays
where z[k] = P.z[k]
, x[k] = P.x[k]
respectively.
The and arrays can be accessed and updated using the z
and x
properties respectively. The phase integer can be accessed and updated using the phase
property.
Matrix Operator Representation
Pauli’s can be converted to Operator
using the to_operator()
method, or to a dense or sparse complex matrix using the to_matrix()
method.
Data Access
The individual qubit Paulis can be accessed and updated using the []
operator which accepts integer, lists, or slices for selecting subsets of Paulis. Note that selecting subsets of Pauli’s will discard the phase of the current Pauli.
For example
Initialize the Pauli.
When using the symplectic array input data both z and x arguments must be provided, however the first (z) argument can be used alone for string label, Pauli operator, or ScalarOp input data.
Parameters
- data (str or tuple or Pauli orScalarOp) – input data for Pauli. If input is a tuple it must be of the form
(z, x)
or (z, x, phase)`` wherez
andx
are boolean Numpy arrays, and phase is an integer from Z_4. If input is a string, it must be a concatenation of a phase and a Pauli string (e.g. ‘XYZ’, ‘-iZIZ’) where a phase string is a combination of at most three characters from [‘+’, ‘-‘, ‘’], [‘1’, ‘’], and [‘i’, ‘j’, ‘’] in this order, e.g. ‘’, ‘-1j’ while a Pauli string is 1 or more characters of ‘I’, ‘X’, ‘Y’ or ‘Z’, e.g. ‘Z’, ‘XIYY’. - x (np.ndarray) – DEPRECATED, symplectic x vector.
- z (np.ndarray) – DEPRECATED, symplectic z vector.
- label (str) – DEPRECATED, string label.
Raises
QiskitError – if input array is invalid shape.
Methods
adjoint
Pauli.adjoint()
Return the adjoint of the Operator.
anticommutes
Pauli.anticommutes(other, qargs=None)
Return True if other Pauli anticommutes with self.
Parameters
- other (Pauli) – another Pauli operator.
- qargs (list) – qubits to apply dot product on (default: None).
Returns
True if Pauli’s anticommute, False if they commute.
Return type
bool
append_paulis
Pauli.append_paulis(paulis=None, pauli_labels=None)
DEPRECATED: Append pauli at the end.
Parameters
- paulis (Pauli) – the to-be-inserted or appended pauli
- pauli_labels (list[str]) – the to-be-inserted or appended pauli label
Returns
self
Return type
commutes
Pauli.commutes(other, qargs=None)
Return True if the Pauli commutes with other.
Parameters
- other (Pauli orPauliList) – another Pauli operator.
- qargs (list) – qubits to apply dot product on (default: None).
Returns
True if Pauli’s commute, False if they anti-commute.
Return type
bool
compose
Pauli.compose(other, qargs=None, front=False, inplace=False)
Return the operator composition with another Pauli.
Parameters
- other (Pauli) – a Pauli object.
- qargs (list or None) – Optional, qubits to apply dot product on (default: None).
- front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].
- inplace (bool) – If True update in-place (default: False).
Returns
The composed Pauli.
Return type
Raises
QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
Composition (&
) by default is defined as left matrix multiplication for matrix operators, while dot()
is defined as right matrix multiplication. That is that A & B == A.compose(B)
is equivalent to B.dot(A)
when A
and B
are of the same type.
Setting the front=True
kwarg changes this to right matrix multiplication and is equivalent to the dot()
method A.dot(B) == A.compose(B, front=True)
.
conjugate
Pauli.conjugate()
Return the conjugate of each Pauli in the list.
copy
Pauli.copy()
Make a deep copy of current operator.
delete
Pauli.delete(qubits)
Return a Pauli with qubits deleted.
Parameters
qubits (int or list) – qubits to delete from Pauli.
Returns
the resulting Pauli with the specified qubits removed.
Return type
Raises
QiskitError – if ind is out of bounds for the array size or number of qubits.
delete_qubits
Pauli.delete_qubits(indices)
DEPRECATED: Delete pauli at the indices.
This function is deprecated. Equivalent functionality can be obtained using the delete()
method.
Parameters
indices (list[int]) – the indices of to-be-deleted paulis
Returns
self
Return type
dot
Pauli.dot(other, qargs=None, inplace=False)
Return the right multiplied operator self * other.
Parameters
- other (Pauli) – an operator object.
- qargs (list or None) – Optional, qubits to apply dot product on (default: None).
- inplace (bool) – If True update in-place (default: False).
Returns
The operator self * other.
Return type
equiv
Pauli.equiv(other)
Return True if Pauli’s are equivalent up to group phase.
Parameters
other (Pauli) – an operator object.
Returns
True if the Pauli’s are equivalent up to group phase.
Return type
bool
evolve
Pauli.evolve(other, qargs=None, frame='h')
Heisenberg picture evolution of a Pauli by a Clifford.
This returns the Pauli .
By choosing the parameter frame=’s’, this function returns the Schrödinger evolution of the Pauli . This option yields a faster calculation.
Parameters
- other (Pauli orClifford orQuantumCircuit) – The Clifford operator to evolve by.
- qargs (list) – a list of qubits to apply the Clifford to.
- frame (string) – ‘h’ for Heisenberg or ‘s’ for Schrödinger framework.
Returns
the Pauli .
Return type
Raises
QiskitError – if the Clifford number of qubits and qargs don’t match.
expand
Pauli.expand(other)
Return the reverse-order tensor product with another Pauli.
Parameters
other (Pauli) – a Pauli object.
Returns
the tensor product , where
is the current Pauli, and is the other Pauli.
Return type
from_label
static Pauli.from_label(*args, **kwargs)
DEPRECATED: Construct a Pauli from a string label.
This function is deprecated use Pauli(label)
instead.
Parameters
label (str) – Pauli string label.
Returns
the constructed Pauli.
Return type
Raises
- QiskitError – If the input list is empty or contains invalid
- Pauli strings. –
input_dims
Pauli.input_dims(qargs=None)
Return tuple of input dimension for specified subsystems.
insert
Pauli.insert(qubits, value)
Insert a Pauli at specific qubit value.
Parameters
- qubits (int or list) – qubits index to insert at.
- value (Pauli) – value to insert.
Returns
the resulting Pauli with the entries inserted.
Return type
Raises
QiskitError – if the insertion qubits are invalid.
insert_paulis
Pauli.insert_paulis(indices=None, paulis=None, pauli_labels=None)
DEPRECATED: Insert or append pauli to the targeted indices.
This function is deprecated. Similar functionality can be obtained using the insert()
method.
If indices is None, it means append at the end.
Parameters
- indices (list[int]) – the qubit indices to be inserted
- paulis (Pauli) – the to-be-inserted or appended pauli
- pauli_labels (list[str]) – the to-be-inserted or appended pauli label
the indices refers to the location of original paulis, e.g. if indices = [0, 2], pauli_labels = [‘Z’, ‘I’] and original pauli = ‘ZYXI’ the pauli will be updated to ZY’I’XI’Z’ ‘Z’ and ‘I’ are inserted before the qubit at 0 and 2.
Returns
self
Return type
Raises
QiskitError – provide both paulis and pauli_labels at the same time
inverse
Pauli.inverse()
Return the inverse of the Pauli.
kron
Pauli.kron(other)
DEPRECATED: Kronecker product of two paulis.
This function is deprecated. Use expand()
instead.
Order is $P_2 (other) otimes P_1 (self)$
Parameters
other (Pauli) – P2
Returns
self
Return type
output_dims
Pauli.output_dims(qargs=None)
Return tuple of output dimension for specified subsystems.
pauli_single
classmethod Pauli.pauli_single(num_qubits, index, pauli_label)
DEPRECATED: Generate single qubit pauli at index with pauli_label with length num_qubits.
Parameters
- num_qubits (int) – the length of pauli
- index (int) – the qubit index to insert the single qubit
- pauli_label (str) – pauli
Returns
single qubit pauli
Return type
power
Pauli.power(n)
Return the compose of a operator with itself n times.
Parameters
n (int) – the number of times to compose with self (n>0).
Returns
the n-times composed operator.
Return type
Raises
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
random
classmethod Pauli.random(num_qubits, seed=None)
DEPRECATED: Return a random Pauli on number of qubits.
This function is deprecated use random_pauli()
instead.
Parameters
- num_qubits (int) – the number of qubits
- seed (int) – Optional. To set a random seed.
Returns
the random pauli
Return type
reshape
Pauli.reshape(input_dims=None, output_dims=None, num_qubits=None)
Return a shallow copy with reshaped input and output subsystem dimensions.
Parameters
- input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
- output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
- num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
Returns
returns self with reshaped input and output dimensions.
Return type
BaseOperator
Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
set_truncation
classmethod Pauli.set_truncation(val)
Set the max number of Pauli characters to display before truncation/
Parameters
val (int) – the number of characters.
Truncation will be disabled if the truncation value is set to 0.
sgn_prod
static Pauli.sgn_prod(*args, **kwargs)
DEPRECATED: Multiply two Paulis and track the phase.
This function is deprecated. The Pauli class now handles full Pauli group multiplication using compose()
or dot()
.
$P_3 = P_1 otimes P_2$: X*Y
Parameters
Returns
the multiplied pauli (without phase) complex: the sign of the multiplication, 1, -1, 1j or -1j
Return type
tensor
Pauli.tensor(other)
Return the tensor product with another Pauli.
Parameters
other (Pauli) – a Pauli object.
Returns
the tensor product , where
is the current Pauli, and is the other Pauli.
Return type
The tensor product can be obtained using the ^
binary operator. Hence a.tensor(b)
is equivalent to a ^ b
.
to_instruction
Pauli.to_instruction()
Convert to Pauli circuit instruction.
to_label
Pauli.to_label()
Convert a Pauli to a string label.
The difference between to_label and __str__()
is that the later will truncate the output for large numbers of qubits.
Returns
the Pauli string label.
Return type
str
to_matrix
Pauli.to_matrix(sparse=False)
Convert to a Numpy array or sparse CSR matrix.
Parameters
sparse (bool) – if True return sparse CSR matrices, otherwise return dense Numpy arrays (default: False).
Returns
The Pauli matrix.
Return type
array
to_spmatrix
Pauli.to_spmatrix()
DEPRECATED Convert Pauli to a sparse matrix representation (CSR format).
This function is deprecated. Use to_matrix()
with kwarg sparse=True
instead.
Returns
a sparse matrix with CSR format that represents the pauli.
Return type
scipy.sparse.csr_matrix
transpose
Pauli.transpose()
Return the transpose of each Pauli in the list.
update_x
Pauli.update_x(x, indices=None)
DEPRECATED: Update partial or entire x.
This function is deprecated. Use the setter for X
instead.
Parameters
- x (numpy.ndarray or list) – to-be-updated x
- indices (numpy.ndarray or list or optional) – to-be-updated qubit indices
Returns
self
Return type
Raises
QiskitError – when updating whole x, the number of qubits must be the same.
update_z
Pauli.update_z(z, indices=None)
DEPRECATED: Update partial or entire z.
This function is deprecated. Use the setter for Z
instead.
Parameters
- z (numpy.ndarray or list) – to-be-updated z
- indices (numpy.ndarray or list or optional) – to-be-updated qubit indices
Returns
self
Return type
Raises
QiskitError – when updating whole z, the number of qubits must be the same.
Attributes
dim
Return tuple (input_shape, output_shape).
name
Unique string identifier for operation type.
num_clbits
Number of classical bits.
num_qubits
Return the number of qubits if a N-qubit operator or None otherwise.
phase
Return the group phase exponent for the Pauli.
qargs
Return the qargs for the operator.
settings
Return settings.
Return type
Dict
x
The x vector for the Pauli.
z
The z vector for the Pauli.