QuantumCircuit
class QuantumCircuit(*regs, name=None, global_phase=0, metadata=None)
Bases: object
Create a new circuit.
A circuit is a list of instructions bound to some registers.
Parameters
-
regs (list(
Register
) or list(int
) or list(list(Bit
))) –The registers to be included in the circuit.
-
If a list of
Register
objects, represents theQuantumRegister
and/orClassicalRegister
objects to include in the circuit.For example:
QuantumCircuit(QuantumRegister(4))
QuantumCircuit(QuantumRegister(4), ClassicalRegister(3))
QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(2, 'qr1'))
-
If a list of
int
, the amount of qubits and/or classical bits to include in the circuit. It can either be a single int for just the number of quantum bits, or 2 ints for the number of quantum bits and classical bits, respectively.For example:
QuantumCircuit(4) # A QuantumCircuit with 4 qubits
QuantumCircuit(4, 3) # A QuantumCircuit with 4 qubits and 3 classical bits
-
If a list of python lists containing
Bit
objects, a collection ofBit
s to be added to the circuit.
-
-
name (str) – the name of the quantum circuit. If not set, an automatically generated string will be assigned.
-
global_phase (float or ParameterExpression) – The global phase of the circuit in radians.
-
metadata (dict) – Arbitrary key value metadata to associate with the circuit. This gets stored as free-form data in a dict in the
metadata
attribute. It will not be directly used in the circuit.
Raises
CircuitError – if the circuit name, if given, is not valid.
Examples
Construct a simple Bell state circuit.
from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
qc.draw()
┌───┐ ┌─┐
q_0: ┤ H ├──■──┤M├───
└───┘┌─┴─┐└╥┘┌─┐
q_1: ─────┤ X ├─╫─┤M├
└───┘ ║ └╥┘
c: 2/═══════════╩══╩═
0 1
Construct a 5-qubit GHZ circuit.
from qiskit import QuantumCircuit
qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0, range(1, 5))
qc.measure_all()
Construct a 4-qubit Bernstein-Vazirani circuit using registers.
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
qr = QuantumRegister(3, 'q')
anc = QuantumRegister(1, 'ancilla')
cr = ClassicalRegister(3, 'c')
qc = QuantumCircuit(qr, anc, cr)
qc.x(anc[0])
qc.h(anc[0])
qc.h(qr[0:3])
qc.cx(qr[0:3], anc[0])
qc.h(qr[0:3])
qc.barrier(qr)
qc.measure(qr, cr)
qc.draw()
┌───┐ ┌───┐ ░ ┌─┐
q_0: ┤ H ├───────■──┤ H ├───────────░─┤M├──────
├───┤ │ └───┘┌───┐ ░ └╥┘┌─┐
q_1: ┤ H ├───────┼────■──┤ H ├──────░──╫─┤M├───
├───┤ │ │ └───┘┌───┐ ░ ║ └╥┘┌─┐
q_2: ┤ H ├───────┼────┼────■──┤ H ├─░──╫──╫─┤M├
├───┤┌───┐┌─┴─┐┌─┴─┐┌─┴─┐└───┘ ░ ║ ║ └╥┘
ancilla_0: ┤ X ├┤ H ├┤ X ├┤ X ├┤ X ├─────────╫──╫──╫─
└───┘└───┘└───┘└───┘└───┘ ║ ║ ║
c: 3/══════════════════════════════════╩══╩══╩═
0 1 2
Methods
add_bits
QuantumCircuit.add_bits(bits)
Add Bits to the circuit.
add_calibration
QuantumCircuit.add_calibration(gate, qubits, schedule, params=None)
Register a low-level, custom pulse definition for the given gate.
Parameters
- gate (Union[Gate, str]) – Gate information.
- qubits (Union[int, Tuple[int]]) – List of qubits to be measured.
- schedule (Schedule) – Schedule information.
- params (Optional[List[Union[float, Parameter]]]) – A list of parameters.
Raises
Exception – if the gate is of type string and params is None.
add_register
QuantumCircuit.add_register(*regs)
Add registers.
append
QuantumCircuit.append(instruction, qargs=None, cargs=None)
Append one or more instructions to the end of the circuit, modifying the circuit in place. Expands qargs and cargs.
Parameters
- instruction (qiskit.circuit.Instruction) – Instruction instance to append
- qargs (list(argument)) – qubits to attach instruction to
- cargs (list(argument)) – clbits to attach instruction to
Returns
a handle to the instruction that was just added
Return type
Raises
- CircuitError – if object passed is a subclass of Instruction
- CircuitError – if object passed is neither subclass nor an instance of Instruction
assign_parameters
QuantumCircuit.assign_parameters(parameters, inplace=False, param_dict=None)
Assign parameters to new parameters or values.
The keys of the parameter dictionary must be Parameter instances in the current circuit. The values of the dictionary can either be numeric values or new parameter objects. The values can be assigned to the current circuit object or to a copy of it.
Parameters
- parameters (dict or iterable) – Either a dictionary or iterable specifying the new parameter values. If a dict, it specifies the mapping from
current_parameter
tonew_parameter
, wherenew_parameter
can be a new parameter object or a numeric value. If an iterable, the elements are assigned to the existing parameters in the order they were inserted. You can callQuantumCircuit.parameters
to check this order. - inplace (bool) – If False, a copy of the circuit with the bound parameters is returned. If True the circuit instance itself is modified.
- param_dict (dict) – Deprecated, use
parameters
instead.
Raises
- CircuitError – If parameters is a dict and contains parameters not present in the circuit.
- ValueError – If parameters is a list/array and the length mismatches the number of free parameters in the circuit.
Returns
A copy of the circuit with bound parameters, if inplace
is False, otherwise None.
Return type
Optional(QuantumCircuit)
Examples
Create a parameterized circuit and assign the parameters in-place.
from qiskit.circuit import QuantumCircuit, Parameter
circuit = QuantumCircuit(2)
params = [Parameter('A'), Parameter('B'), Parameter('C')]
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
print('Original circuit:')
print(circuit.draw())
circuit.assign_parameters({params[0]: params[2]}, inplace=True)
print('Assigned in-place:')
print(circuit.draw())
Original circuit:
┌───────┐
q_0: ┤ Ry(A) ├────■────
└───────┘┌───┴───┐
q_1: ─────────┤ Rx(B) ├
└───────┘
Assigned in-place:
┌───────┐
q_0: ┤ Ry(C) ├────■────
└───────┘┌───┴───┐
q_1: ─────────┤ Rx(B) ├
└───────┘
Bind the values out-of-place and get a copy of the original circuit.
from qiskit.circuit import QuantumCircuit, ParameterVector
circuit = QuantumCircuit(2)
params = ParameterVector('P', 2)
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
bound_circuit = circuit.assign_parameters({params[0]: 1, params[1]: 2})
print('Bound circuit:')
print(bound_circuit.draw())
print('The original circuit is unchanged:')
print(circuit.draw())
Bound circuit:
┌───────┐
q_0: ┤ Ry(1) ├────■────
└───────┘┌───┴───┐
q_1: ─────────┤ Rx(2) ├
└───────┘
The original circuit is unchanged:
┌──────────┐
q_0: ┤ Ry(P[0]) ├─────■──────
└──────────┘┌────┴─────┐
q_1: ────────────┤ Rx(P[1]) ├
└──────────┘
barrier
QuantumCircuit.barrier(*qargs)
Apply Barrier
. If qargs is None, applies to all.
bind_parameters
QuantumCircuit.bind_parameters(values, value_dict=None)
Assign numeric parameters to values yielding a new circuit.
To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the assign_parameters()
method.
Parameters
- values (dict or iterable) – {parameter: value, …} or [value1, value2, …]
- value_dict (dict) – Deprecated, use
values
instead.
Raises
- CircuitError – If values is a dict and contains parameters not present in the circuit.
- TypeError – If values contains a ParameterExpression.
Returns
copy of self with assignment substitution.
Return type
cast
static QuantumCircuit.cast(value, _type)
Best effort to cast value to type. Otherwise, returns the value.
cbit_argument_conversion
QuantumCircuit.cbit_argument_conversion(clbit_representation)
Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.
Parameters
clbit_representation (Object) – representation to expand
Returns
Where each tuple is a classical bit.
Return type
List(tuple)
ccx
QuantumCircuit.ccx(control_qubit1, control_qubit2, target_qubit, ctrl_state=None)
Apply CCXGate
.
ch
QuantumCircuit.ch(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CHGate
.
cls_instances
classmethod QuantumCircuit.cls_instances()
Return the current number of instances of this class, useful for auto naming.
cls_prefix
classmethod QuantumCircuit.cls_prefix()
Return the prefix to use for auto naming.
cnot
QuantumCircuit.cnot(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CXGate
.
combine
QuantumCircuit.combine(rhs)
DEPRECATED - Returns rhs appended to self if self contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Return self + rhs as a new object.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns a new QuantumCircuit object
Return type
Raises
QiskitError – if the rhs circuit is not compatible
compose
QuantumCircuit.compose(other, qubits=None, clbits=None, front=False, inplace=False, wrap=False)
Compose circuit with other
circuit or instruction, optionally permuting wires.
other
can be narrower or of equal width to self
.
Parameters
- other (qiskit.circuit.Instruction orQuantumCircuit or BaseOperator) – (sub)circuit to compose onto self.
- qubits (list[Qubit|int]) – qubits of self to compose onto.
- clbits (list[Clbit|int]) – clbits of self to compose onto.
- front (bool) – If True, front composition will be performed (not implemented yet).
- inplace (bool) – If True, modify the object. Otherwise return composed circuit.
- wrap (bool) – If True, wraps the other circuit into a gate (or instruction, depending on whether it contains only unitary instructions) before composing it onto self.
Returns
the composed circuit (returns None if inplace==True).
Return type
Raises
- CircuitError – if composing on the front.
- QiskitError – if
other
is wider or there are duplicate edge mappings.
Examples:
lhs.compose(rhs, qubits=[3, 2], inplace=True)
.. parsed-literal::
┌───┐ ┌─────┐ ┌───┐
lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├───────────────
├───┤ ┌─┴─┐└─────┘ ├───┤
lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├───────────────
┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
└─────────┘ └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├
┌─┴─┐ ┌─┴─┐ └─────┘
lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├───────────────
└───┘ └───┘
lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════
lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
control
QuantumCircuit.control(num_ctrl_qubits=1, label=None, ctrl_state=None)
Control this circuit on num_ctrl_qubits
qubits.
Parameters
- num_ctrl_qubits (int) – The number of control qubits.
- label (str) – An optional label to give the controlled operation for visualization.
- ctrl_state (str or int) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use
2**num_ctrl_qubits - 1
.
Returns
The controlled version of this circuit.
Return type
Raises
CircuitError – If the circuit contains a non-unitary operation and cannot be controlled.
copy
QuantumCircuit.copy(name=None)
Copy the circuit.
Parameters
name (str) – name to be given to the copied circuit. If None, then the name stays the same
Returns
a deepcopy of the current circuit, with the specified name
Return type
count_ops
QuantumCircuit.count_ops()
Count each operation kind in the circuit.
Returns
a breakdown of how many operations of each kind, sorted by amount.
Return type
OrderedDict
cp
QuantumCircuit.cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CPhaseGate
.
crx
QuantumCircuit.crx(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRXGate
.
cry
QuantumCircuit.cry(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRYGate
.
crz
QuantumCircuit.crz(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRZGate
.
cswap
QuantumCircuit.cswap(control_qubit, target_qubit1, target_qubit2, label=None, ctrl_state=None)
Apply CSwapGate
.
csx
QuantumCircuit.csx(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CSXGate
.
cu
QuantumCircuit.cu(theta, phi, lam, gamma, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CUGate
.
cu1
QuantumCircuit.cu1(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CU1Gate
.
cu3
QuantumCircuit.cu3(theta, phi, lam, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CU3Gate
.
cx
QuantumCircuit.cx(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CXGate
.
cy
QuantumCircuit.cy(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CYGate
.
cz
QuantumCircuit.cz(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CZGate
.
dcx
QuantumCircuit.dcx(qubit1, qubit2)
Apply DCXGate
.
decompose
QuantumCircuit.decompose()
Call a decomposition pass on this circuit, to decompose one level (shallow decompose).
Returns
a circuit one level decomposed
Return type
delay
QuantumCircuit.delay(duration, qarg=None, unit='dt')
Apply Delay
. If qarg is None, applies to all qubits. When applying to multiple qubits, delays with the same duration will be created.
Parameters
- duration (int or float or ParameterExpression) – duration of the delay.
- qarg (Object) – qubit argument to apply this delay.
- unit (str) – unit of the duration. Supported units: ‘s’, ‘ms’, ‘us’, ‘ns’, ‘ps’, ‘dt’. Default is
dt
, i.e. integer time unit depending on the target backend.
Returns
the attached delay instruction.
Return type
qiskit.Instruction
Raises
CircuitError – if arguments have bad format.
depth
QuantumCircuit.depth()
Return circuit depth (i.e., length of critical path). This does not include compiler or simulator directives such as ‘barrier’ or ‘snapshot’.
Returns
Depth of circuit.
Return type
int
Notes
The circuit depth and the DAG depth need not be the same.
diagonal
QuantumCircuit.diagonal(diag, qubit)
Attach a diagonal gate to a circuit.
The decomposition is based on Theorem 7 given in “Synthesis of Quantum Logic Circuits” by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).
Parameters
- diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries
- qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)
Returns
the diagonal gate which was attached to the circuit.
Return type
Raises
QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits
draw
QuantumCircuit.draw(output=None, scale=None, filename=None, style=None, interactive=False, plot_barriers=True, reverse_bits=False, justify=None, vertical_compression='medium', idle_wires=True, with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=True)
Draw the quantum circuit. Use the output parameter to choose the drawing format:
text: ASCII art TextDrawing that can be printed in the console.
matplotlib: images with color rendered purely in Python.
latex: high-quality images compiled via latex.
latex_source: raw uncompiled latex output.
Parameters
- output (str) – select the output method to use for drawing the circuit. Valid choices are
text
,mpl
,latex
,latex_source
. By default the text drawer is used unless the user config file (usually~/.qiskit/settings.conf
) has an alternative backend set as the default. For example,circuit_drawer = latex
. If the output kwarg is set, that backend will always be used over the default in the user config file. - scale (float) – scale of image to draw (shrink if < 1.0). Only used by the mpl, latex and latex_source outputs. Defaults to 1.0.
- filename (str) – file path to save image to. Defaults to None.
- style (dict or str) – dictionary of style or file name of style json file. This option is only used by the mpl or latex output type. If style is a str, it is used as the path to a json file which contains a style dict. The file will be opened, parsed, and then any style elements in the dict will replace the default values in the input dict. A file to be loaded must end in
.json
, but the name entered here can omit.json
. For example,style='iqx.json'
orstyle='iqx'
. If style is a dict and the'name'
key is set, that name will be used to load a json file, followed by loading the other items in the style dict. For example,style={'name': 'iqx'}
. If style is not a str and name is not a key in the style dict, then the default value from the user config file (usually~/.qiskit/settings.conf
) will be used, for example,circuit_mpl_style = iqx
. If none of these are set, the default style will be used. The search path for style json files can be specified in the user config, for example,circuit_mpl_style_path = /home/user/styles:/home/user
. See:DefaultStyle
for more information on the contents. - interactive (bool) – when set to true, show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored. Defaults to False.
- reverse_bits (bool) – when set to True, reverse the bit order inside registers for the output visualization. Defaults to False.
- plot_barriers (bool) – enable/disable drawing barriers in the output circuit. Defaults to True.
- justify (string) – options are
left
,right
ornone
. If anything else is supplied, it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option.none
results in each gate being placed in its own column. - vertical_compression (string) –
high
,medium
orlow
. It merges the lines generated by the text output so the drawing will take less vertical room. Default ismedium
. Only used by the text output, will be silently ignored otherwise. - idle_wires (bool) – include idle wires (wires with no circuit elements) in output visualization. Default is True.
- with_layout (bool) – include layout information, with labels on the physical layout. Default is True.
- fold (int) – sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil.get_terminal_size()
. However, if running in jupyter, the default line length is set to 80 characters. In mpl, it is the number of (visual) layers before folding. Default is 25. - ax (matplotlib.axes.Axes) – Only used by the mpl backend. An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified there will be no returned Figure since it is redundant.
- initial_state (bool) – optional. Adds
|0>
in the beginning of the wire. Default is False. - cregbundle (bool) – optional. If set True, bundle classical registers. Default is True.
Returns
TextDrawing
or matplotlib.figure
or PIL.Image
or str
:
-
TextDrawing (output=’text’)
A drawing that can be printed as ascii art.
-
matplotlib.figure.Figure (output=’mpl’)
A matplotlib figure object for the circuit diagram.
-
PIL.Image (output=’latex’)
An in-memory representation of the image of the circuit diagram.
-
str (output=’latex_source’)
The LaTeX source code for visualizing the circuit diagram.
Raises
- VisualizationError – when an invalid output method is selected
- ImportError – when the output methods requires non-installed libraries.
Example
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.tools.visualization import circuit_drawer
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
ecr
QuantumCircuit.ecr(qubit1, qubit2)
Apply ECRGate
.
extend
QuantumCircuit.extend(rhs)
DEPRECATED - Append QuantumCircuit to the RHS if it contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Modify and return self.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns this QuantumCircuit object (which has been modified)
Return type
Raises
QiskitError – if the rhs circuit is not compatible
fredkin
QuantumCircuit.fredkin(control_qubit, target_qubit1, target_qubit2)
Apply CSwapGate
.
from_qasm_file
static QuantumCircuit.from_qasm_file(path)
Take in a QASM file and generate a QuantumCircuit object.
Parameters
path (str) – Path to the file for a QASM program
Returns
The QuantumCircuit object for the input QASM
Return type
from_qasm_str
static QuantumCircuit.from_qasm_str(qasm_str)
Take in a QASM string and generate a QuantumCircuit object.
Parameters
qasm_str (str) – A QASM program string
Returns
The QuantumCircuit object for the input QASM
Return type
get_instructions
QuantumCircuit.get_instructions(name)
Get instructions matching name.
Parameters
name (str) – The name of instruction to.
Returns
list of (instruction, qargs, cargs).
Return type
list(tuple)
h
QuantumCircuit.h(qubit)
Apply HGate
.
hamiltonian
QuantumCircuit.hamiltonian(operator, time, qubits, label=None)
Apply hamiltonian evolution to qubits.
has_register
QuantumCircuit.has_register(register)
Test if this circuit has the register r.
Parameters
register (Register) – a quantum or classical register.
Returns
True if the register is contained in this circuit.
Return type
bool
i
QuantumCircuit.i(qubit)
Apply IGate
.
id
QuantumCircuit.id(qubit)
Apply IGate
.
initialize
QuantumCircuit.initialize(params, qubits=None)
Initialize qubits in a specific state.
Qubit initialization is done by first resetting the qubits to followed by an state preparing unitary. Both these steps are included in the Initialize instruction.
Parameters
-
params (str or list or int) –
-
str: labels of basis states of the Pauli eigenstates Z, X, Y. See
from_label()
. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label ‘01’ initializes the qubit zero to |1> and the qubit one to |0>. -
list: vector of complex amplitudes to initialize to.
-
int: an integer that is used as a bitmap indicating which qubits to initialize
to |1>. Example: setting params to 5 would initialize qubit 0 and qubit 2 to |1> and qubit 1 to |0>.
-
-
qubits (QuantumRegister or int) –
- QuantumRegister: A list of qubits to be initialized [Default: None].
- int: Index of qubit to initialized [Default: None].
Returns
a handle to the instruction that was just initialized
Return type
Examples
Prepare a qubit in the state .
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.initialize([1/np.sqrt(2), -1/np.sqrt(2)], 0)
circuit.draw()
┌──────────────────────────────┐
q_0: ┤ Initialize(0.70711,-0.70711) ├
└──────────────────────────────┘
output:
┌──────────────────────────────┐
q_0: ┤ initialize(0.70711,-0.70711) ├
└──────────────────────────────┘
Initialize from a string two qubits in the state |10>. The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in from_label()
.
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.initialize('01', circuit.qubits)
circuit.draw()
┌──────────────────┐
q_0: ┤0 ├
│ Initialize(0,1) │
q_1: ┤1 ├
└──────────────────┘
output:
┌──────────────────┐
q_0: ┤0 ├
│ initialize(0,1) │
q_1: ┤1 ├
└──────────────────┘
Initialize two qubits from an array of complex amplitudes .. jupyter-execute:
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits)
circuit.draw()
output:
┌────────────────────────────────────┐
q_0: ┤0 ├
│ initialize(0,0.70711,-0.70711j,0) │
q_1: ┤1 ├
└────────────────────────────────────┘
inverse
QuantumCircuit.inverse()
Invert (take adjoint of) this circuit.
This is done by recursively inverting all gates.
Returns
the inverted circuit
Return type
Raises
CircuitError – if the circuit cannot be inverted.
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌───┐
q_0: ──────■──────┤ H ├
┌─────┴─────┐└───┘
q_1: ┤ RX(-1.57) ├─────
└───────────┘
iso
QuantumCircuit.iso(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None, epsilon=1e-10)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
- epsilon (float) – error tolerance of calculations. Default is epsilon = _EPS.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
isometry
QuantumCircuit.isometry(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None, epsilon=1e-10)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
- epsilon (float) – error tolerance of calculations. Default is epsilon = _EPS.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
iswap
QuantumCircuit.iswap(qubit1, qubit2)
Apply iSwapGate
.
mcp
QuantumCircuit.mcp(lam, control_qubits, target_qubit)
Apply MCPhaseGate
.
mcrx
QuantumCircuit.mcrx(theta, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled X rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mcry
QuantumCircuit.mcry(theta, q_controls, q_target, q_ancillae=None, mode=None, use_basis_gates=False)
Apply Multiple-Controlled Y rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.
- mode (string) – The implementation mode to use
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mcrz
QuantumCircuit.mcrz(lam, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled Z rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrz gate on.
- lam (float) – angle lambda
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mct
QuantumCircuit.mct(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
mcu1
QuantumCircuit.mcu1(lam, control_qubits, target_qubit)
Apply MCU1Gate
.
mcx
QuantumCircuit.mcx(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are: - ‘noancilla’: Requires 0 ancilla qubits. - ‘recursion’: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0. - ‘v-chain’: Requires 2 less ancillas than the number of control qubits. - ‘v-chain-dirty’: Same as for the clean ancillas (but the circuit will be longer).
measure
QuantumCircuit.measure(qubit, cbit)
Measure quantum bit into classical bit (tuples).
Parameters
- qubit (QuantumRegister|list|tuple) – quantum register
- cbit (ClassicalRegister|list|tuple) – classical register
Returns
the attached measure instruction.
Return type
qiskit.Instruction
Raises
CircuitError – if qubit is not in this circuit or bad format; if cbit is not in this circuit or not creg.
measure_active
QuantumCircuit.measure_active(inplace=True)
Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
measure_all
QuantumCircuit.measure_all(inplace=True)
Adds measurement to all qubits. Creates a new ClassicalRegister with a size equal to the number of qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
ms
QuantumCircuit.ms(theta, qubits)
Apply MSGate
.
num_connected_components
QuantumCircuit.num_connected_components(unitary_only=False)
How many non-entangled subcircuits can the circuit be factored to.
Parameters
unitary_only (bool) – Compute only unitary part of graph.
Returns
Number of connected components in circuit.
Return type
int
num_nonlocal_gates
QuantumCircuit.num_nonlocal_gates()
Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
num_tensor_factors
QuantumCircuit.num_tensor_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Notes
This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.
num_unitary_factors
QuantumCircuit.num_unitary_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
p
QuantumCircuit.p(theta, qubit)
Apply PhaseGate
.
pauli
QuantumCircuit.pauli(pauli_string, qubits)
Apply PauliGate
.
power
QuantumCircuit.power(power, matrix_power=False)
Raise this circuit to the power of power
.
If power
is a positive integer and matrix_power
is False
, this implementation defaults to calling repeat
. Otherwise, if the circuit is unitary, the matrix is computed to calculate the matrix power.
Parameters
- power (int) – The power to raise this circuit to.
- matrix_power (bool) – If True, the circuit is converted to a matrix and then the matrix power is computed. If False, and
power
is a positive integer, the implementation defaults torepeat
.
Raises
CircuitError – If the circuit needs to be converted to a gate but it is not unitary.
Returns
A circuit implementing this circuit raised to the power of power
.
Return type
qasm
QuantumCircuit.qasm(formatted=False, filename=None, encoding=None)
Return OpenQASM string.
Parameters
- formatted (bool) – Return formatted Qasm string.
- filename (str) – Save Qasm to file with name ‘filename’.
- encoding (str) – Optionally specify the encoding to use for the output file if
filename
is specified. By default this is set to the system’s default encoding (ie whateverlocale.getpreferredencoding()
returns) and can be set to any valid codec or alias from stdlib’s codec module
Returns
If formatted=False.
Return type
str
Raises
- MissingOptionalLibraryError – If pygments is not installed and
formatted
isTrue
. - QasmError – If circuit has free parameters.
qbit_argument_conversion
QuantumCircuit.qbit_argument_conversion(qubit_representation)
Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.
Parameters
qubit_representation (Object) – representation to expand
Returns
Where each tuple is a qubit.
Return type
List(tuple)
qubit_duration
QuantumCircuit.qubit_duration(*qubits)
Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Parameters
*qubits – Qubits within self
to include.
Return type
float
Returns
Return the duration between the first start and last stop time of non-delay instructions
qubit_start_time
QuantumCircuit.qubit_start_time(*qubits)
Return the start time of the first instruction, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Return 0 if there are no instructions over qubits
Parameters
- *qubits – Qubits within
self
to include. Integers are allowed for qubits, indicating - of self.qubits. (indices) –
Return type
float
Returns
Return the start time of the first instruction, excluding delays, over the qubits
Raises
CircuitError – if self
is a not-yet scheduled circuit.
qubit_stop_time
QuantumCircuit.qubit_stop_time(*qubits)
Return the stop time of the last instruction, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Return 0 if there are no instructions over qubits
Parameters
- *qubits – Qubits within
self
to include. Integers are allowed for qubits, indicating - of self.qubits. (indices) –
Return type
float
Returns
Return the stop time of the last instruction, excluding delays, over the qubits
Raises
CircuitError – if self
is a not-yet scheduled circuit.
r
QuantumCircuit.r(theta, phi, qubit)
Apply RGate
.
rcccx
QuantumCircuit.rcccx(control_qubit1, control_qubit2, control_qubit3, target_qubit)
Apply RC3XGate
.
rccx
QuantumCircuit.rccx(control_qubit1, control_qubit2, target_qubit)
Apply RCCXGate
.
remove_final_measurements
QuantumCircuit.remove_final_measurements(inplace=True)
Removes final measurement on all qubits if they are present. Deletes the ClassicalRegister that was used to store the values from these measurements if it is idle.
Returns a new circuit without measurements if inplace=False.
Parameters
inplace (bool) – All measurements removed inplace or return new circuit.
Returns
Returns circuit with measurements removed when inplace = False.
Return type
repeat
QuantumCircuit.repeat(reps)
Repeat this circuit reps
times.
Parameters
reps (int) – How often this circuit should be repeated.
Returns
A circuit containing reps
repetitions of this circuit.
Return type
reset
QuantumCircuit.reset(qubit)
Reset q.
reverse_bits
QuantumCircuit.reverse_bits()
Return a circuit with the opposite order of wires.
The circuit is “vertically” flipped. If a circuit is defined over multiple registers, the resulting circuit will have the same registers but with their order flipped.
This method is useful for converting a circuit written in little-endian convention to the big-endian equivalent, and vice versa.
Returns
the circuit with reversed bit order.
Return type
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌──────────┐
q_0: ─────┤ RX(1.57) ├
┌───┐└────┬─────┘
q_1: ┤ H ├─────■──────
└───┘
reverse_ops
QuantumCircuit.reverse_ops()
Reverse the circuit by reversing the order of instructions.
This is done by recursively reversing all instructions. It does not invert (adjoint) any gate.
Returns
the reversed circuit.
Return type
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌───┐
q_0: ─────■──────┤ H ├
┌────┴─────┐└───┘
q_1: ┤ RX(1.57) ├─────
└──────────┘
rv
QuantumCircuit.rv(vx, vy, vz, qubit)
Apply RVGate
.
rx
QuantumCircuit.rx(theta, qubit, label=None)
Apply RXGate
.
rxx
QuantumCircuit.rxx(theta, qubit1, qubit2)
Apply RXXGate
.
ry
QuantumCircuit.ry(theta, qubit, label=None)
Apply RYGate
.
ryy
QuantumCircuit.ryy(theta, qubit1, qubit2)
Apply RYYGate
.
rz
QuantumCircuit.rz(phi, qubit)
Apply RZGate
.
rzx
QuantumCircuit.rzx(theta, qubit1, qubit2)
Apply RZXGate
.
rzz
QuantumCircuit.rzz(theta, qubit1, qubit2)
Apply RZZGate
.
s
QuantumCircuit.s(qubit)
Apply SGate
.
save_amplitudes
QuantumCircuit.save_amplitudes(params, label='amplitudes', pershot=False, conditional=False)
Save complex statevector amplitudes.
Parameters
- params (List[int] or List[str]) – the basis states to return amplitudes for.
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of amplitudes vectors for each shot of the simulation rather than the a single amplitude vector [Default: False].
- conditional (bool) – if True save the amplitudes vector conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if params is invalid for the specified number of qubits.
save_amplitudes_squared
QuantumCircuit.save_amplitudes_squared(params, label='amplitudes_squared', unnormalized=False, pershot=False, conditional=False)
Save squared statevector amplitudes (probabilities).
Parameters
- params (List[int] or List[str]) – the basis states to return amplitudes for.
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
- pershot (bool) – if True save a list of probability vectors for each shot of the simulation rather than the a single amplitude vector [Default: False].
- conditional (bool) – if True save the probability vector conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if params is invalid for the specified number of qubits.
save_density_matrix
QuantumCircuit.save_density_matrix(qubits=None, label='density_matrix', unnormalized=False, pershot=False, conditional=False)
Save the current simulator quantum state as a density matrix.
Parameters
- qubits (list or None) – the qubits to save reduced density matrix on. If None the full density matrix of qubits will be saved [Default: None].
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated density matrix over all shots [Default: False].
- pershot (bool) – if True save a list of density matrices for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the average or pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_expectation_value
QuantumCircuit.save_expectation_value(operator, qubits, label='expectation_value', unnormalized=False, pershot=False, conditional=False)
Save the expectation value of a Hermitian operator.
Parameters
- operator (Pauli orSparsePauliOp orOperator) – a Hermitian operator.
- qubits (list) – circuit qubits to apply instruction.
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated expectation value over all shot [Default: False].
- pershot (bool) – if True save a list of expectation values for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the average or pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if the input operator is invalid or not Hermitian.
This method appends a SaveExpectationValue
instruction to the quantum circuit.
save_expectation_value_variance
QuantumCircuit.save_expectation_value_variance(operator, qubits, label='expectation_value_variance', unnormalized=False, pershot=False, conditional=False)
Save the expectation value of a Hermitian operator.
Parameters
- operator (Pauli orSparsePauliOp orOperator) – a Hermitian operator.
- qubits (list) – circuit qubits to apply instruction.
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated expectation value and variance over all shot [Default: False].
- pershot (bool) – if True save a list of expectation values and variances for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if the input operator is invalid or not Hermitian.
This method appends a SaveExpectationValueVariance
instruction to the quantum circuit.
save_matrix_product_state
QuantumCircuit.save_matrix_product_state(label='matrix_product_state', pershot=False, conditional=False)
Save the current simulator quantum state as a matrix product state.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save the mps for each shot of the simulation [Default: False].
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_probabilities
QuantumCircuit.save_probabilities(qubits=None, label='probabilities', unnormalized=False, pershot=False, conditional=False)
Save measurement outcome probabilities vector.
Parameters
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
- pershot (bool) – if True save a list of probabilities for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the probabilities data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_probabilities_dict
QuantumCircuit.save_probabilities_dict(qubits=None, label='probabilities', unnormalized=False, pershot=False, conditional=False)
Save measurement outcome probabilities vector.
Parameters
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
- label (str) – the key for retrieving saved data from results.
- unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
- pershot (bool) – if True save a list of probabilities for each shot of the simulation rather than the average over all shots [Default: False].
- conditional (bool) – if True save the probabilities data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_stabilizer
QuantumCircuit.save_stabilizer(label='stabilizer', pershot=False, conditional=False)
Save the current stabilizer simulator quantum state as a Clifford.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of Cliffords for each shot of the simulation [Default: False].
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_state
QuantumCircuit.save_state(label=None, pershot=False, conditional=False)
Save the current simulator quantum state.
Parameters
- label (str or None) – Optional, the key for retrieving saved data from results. If None the key will be the state type of the simulator.
- pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
save_statevector
QuantumCircuit.save_statevector(label='statevector', pershot=False, conditional=False)
Save the current simulator quantum state as a statevector.
Parameters
- pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
- label (str) – the key for retrieving saved data from results.
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_statevector_dict
QuantumCircuit.save_statevector_dict(label='statevector', pershot=False, conditional=False)
Save the current simulator quantum state as a statevector as a dict.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
- conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_superop
QuantumCircuit.save_superop(label='superop', pershot=False)
Save the current state of the superop simulator.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of SuperOp matrices for each shot of the simulation [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
save_unitary
QuantumCircuit.save_unitary(label='unitary', pershot=False)
Save the current state of the unitary simulator.
Parameters
- label (str) – the key for retrieving saved data from results.
- pershot (bool) – if True save a list of unitaries for each shot of the simulation [Default: False].
Returns
with attached instruction.
Return type
This instruction is always defined across all qubits in a circuit.
sdg
QuantumCircuit.sdg(qubit)
Apply SdgGate
.
set_density_matrix
QuantumCircuit.set_density_matrix(state)
Set the density matrix state of the simulator.
Parameters
state (DensityMatrix) – a density matrix.
Returns
with attached instruction.
Return type
Raises
ExtensionError – If the density matrix is the incorrect size for the current circuit.
set_matrix_product_state
QuantumCircuit.set_matrix_product_state(state)
Set the matrix product state of the simulator.
Parameters
state (Tuple[List[Tuple[np.array[complex_t]]]], List[List[float]]) – A matrix_product_state.
Returns
with attached instruction.
Return type
Raises
ExtensionError – If the structure of the state is incorrect
set_stabilizer
QuantumCircuit.set_stabilizer(state)
Set the Clifford stabilizer state of the simulator.
Parameters
state (Clifford) – A clifford operator.
Returns
with attached instruction.
Return type
Raises
ExtensionError – If the state is the incorrect size for the current circuit.
set_statevector
QuantumCircuit.set_statevector(state)
Set the statevector state of the simulator.
Parameters
state (Statevector) – A state matrix.
Returns
with attached instruction.
Return type
Raises
ExtensionError – If the state is the incorrect size for the current circuit.
set_superop
QuantumCircuit.set_superop(state)
Set the superop state of the simulator.
Parameters
state (QuantumChannel) – A CPTP quantum channel.
Returns
with attached instruction.
Return type
Raises
- ExtensionError – If the state is the incorrect size for the current circuit.
- ExtensionError – if the input QuantumChannel is not CPTP.
set_unitary
QuantumCircuit.set_unitary(state)
Set the state state of the simulator.
Parameters
state (Operator) – A state matrix.
Returns
with attached instruction.
Return type
Raises
- ExtensionError – If the state is the incorrect size for the current circuit.
- ExtensionError – if the input matrix is not unitary.
size
QuantumCircuit.size()
Returns total number of gate operations in circuit.
Returns
Total number of gate operations.
Return type
int
snapshot
QuantumCircuit.snapshot(label, snapshot_type='statevector', qubits=None, params=None)
Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier). :param label: a snapshot label to report the result :type label: str :param snapshot_type: the type of the snapshot. :type snapshot_type: str :param qubits: the qubits to apply snapshot to [Default: None]. :type qubits: list or None :param params: the parameters for snapshot_type [Default: None]. :type params: list or None
Returns
with attached command
Return type
Raises
ExtensionError – malformed command
snapshot_density_matrix
QuantumCircuit.snapshot_density_matrix(label, qubits=None)
Take a density matrix snapshot of simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_density_matrix
circuit method.
snapshot_expectation_value
QuantumCircuit.snapshot_expectation_value(label, op, qubits, single_shot=False, variance=False)
Take a snapshot of expectation value <O> of an Operator.
Parameters
- label (str) – a snapshot label to report the result
- op (Operator) – operator to snapshot
- qubits (list) – the qubits to snapshot.
- single_shot (bool) – return list for each shot rather than average [Default: False]
- variance (bool) – compute variance of values [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_expectation_value()
and qiskit.providers.aer.library.save_expectation_value_variance()
circuit methods.
snapshot_probabilities
QuantumCircuit.snapshot_probabilities(label, qubits, variance=False)
Take a probability snapshot of the simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list) – the qubits to snapshot.
- variance (bool) – compute variance of probabilities [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_probabilities()
and qiskit.providers.aer.library.save_probabilities_dict()
circuit methods.
snapshot_stabilizer
QuantumCircuit.snapshot_stabilizer(label)
Take a stabilizer snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_stabilizer()
circuit method.
snapshot_statevector
QuantumCircuit.snapshot_statevector(label)
Take a statevector snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the qiskit.providers.aer.library.save_statevector
circuit method.
squ
QuantumCircuit.squ(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False, *, u=None)
Decompose an arbitrary 2*2 unitary into three rotation gates.
Note that the decomposition is up to a global phase shift. (This is a well known decomposition, which can be found for example in Nielsen and Chuang’s book “Quantum computation and quantum information”.)
Parameters
- unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).
- qubit (QuantumRegister | Qubit) – The qubit which the gate is acting on.
- mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: “ZYZ” (default)
- up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u’ is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u’)
- u (ndarray) – Deprecated, use
unitary_matrix
instead.
Returns
The single-qubit unitary instruction attached to the circuit.
Return type
Raises
QiskitError – if the format is wrong; if the array u is not unitary
swap
QuantumCircuit.swap(qubit1, qubit2)
Apply SwapGate
.
sx
QuantumCircuit.sx(qubit)
Apply SXGate
.
sxdg
QuantumCircuit.sxdg(qubit)
Apply SXdgGate
.
t
QuantumCircuit.t(qubit)
Apply TGate
.
tdg
QuantumCircuit.tdg(qubit)
Apply TdgGate
.
tensor
QuantumCircuit.tensor(other, inplace=False)
Tensor self
with other
.
Remember that in the little-endian convention the leftmost operation will be at the bottom of the circuit. See also the docs for more information.
┌────────┐ ┌─────┐ ┌─────┐
q_0: ┤ bottom ├ ⊗ q_0: ┤ top ├ = q_0: ─┤ top ├──
└────────┘ └─────┘ ┌┴─────┴─┐
q_1: ┤ bottom ├
└────────┘
Parameters
- other (QuantumCircuit) – The other circuit to tensor this circuit with.
- inplace (bool) – If True, modify the object. Otherwise return composed circuit.
Examples
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
print(tensored.draw())
┌───┐
q_0: ───┤ X ├───
└───┘
q_1: ─────■─────
┌────┴────┐
q_2: ┤ Ry(0.2) ├
└─────────┘
Returns
The tensored circuit (returns None if inplace==True).
Return type
to_gate
QuantumCircuit.to_gate(parameter_map=None, label=None)
Create a Gate out of this circuit.
Parameters
- parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the gate. If None, existing circuit parameters will also parameterize the gate.
- label (str) – Optional gate label.
Returns
a composite gate encapsulating this circuit (can be decomposed back)
Return type
to_instruction
QuantumCircuit.to_instruction(parameter_map=None, label=None)
Create an Instruction out of this circuit.
Parameters
- parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction.
- label (str) – Optional gate label.
Returns
a composite instruction encapsulating this circuit (can be decomposed back)
Return type
toffoli
QuantumCircuit.toffoli(control_qubit1, control_qubit2, target_qubit)
Apply CCXGate
.
u
QuantumCircuit.u(theta, phi, lam, qubit)
Apply UGate
.
u1
QuantumCircuit.u1(theta, qubit)
Apply U1Gate
.
u2
QuantumCircuit.u2(phi, lam, qubit)
Apply U2Gate
.
u3
QuantumCircuit.u3(theta, phi, lam, qubit)
Apply U3Gate
.
uc
QuantumCircuit.uc(gate_list, q_controls, q_target, up_to_diagonal=False)
Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.
The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.
Parameters
- gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array
- q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on
- q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.
- up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u’ is implemented such that there exists a diagonal gate d with u = d.dot(u’), where the unitary u describes the uniformly controlled gate
Returns
the uniformly controlled gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucrx
QuantumCircuit.ucrx(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list) – list of (real) rotation angles
- q_controls (QuantumRegister|list) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRx(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRx(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucry
QuantumCircuit.ucry(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRy(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRy(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucrz
QuantumCircuit.ucrz(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles [a_0,…,a_{2^k-1}]
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the rotation Rz(a_0)is performed if q[1] and q[2] are in the state zero, the rotation Rz(a_1) is performed if q[1] is in the state one and q[2] is in the state zero, and so on
- q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
unitary
QuantumCircuit.unitary(obj, qubits, label=None)
Apply unitary gate to q.
width
QuantumCircuit.width()
Return number of qubits plus clbits in circuit.
Returns
Width of circuit.
Return type
int
x
QuantumCircuit.x(qubit, label=None)
Apply XGate
.
y
QuantumCircuit.y(qubit)
Apply YGate
.
z
QuantumCircuit.z(qubit)
Apply ZGate
.
Attributes
ancillas
Returns a list of ancilla bits in the order that the registers were added.
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
clbits
Returns a list of classical bits in the order that the registers were added.
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the tuples for the circuit’s data.
Each tuple is in the format (instruction, qargs, cargs)
, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.
Return type
QuantumCircuitData
extension_lib
Default value: 'include "qelib1.inc";'
global_phase
Return the global phase of the circuit in radians.
header
Default value: 'OPENQASM 2.0;'
instances
Default value: 16
metadata
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
num_ancillas
Return the number of ancilla qubits.
num_clbits
Return number of classical bits.
num_parameters
Convenience function to get the number of parameter objects in the circuit.
num_qubits
Return number of qubits.
parameters
Convenience function to get the parameters defined in the parameter table.
prefix
Default value: 'circuit'
qubits
Returns a list of quantum bits in the order that the registers were added.