SamplingVQE
class qiskit.algorithms.minimum_eigensolvers.SamplingVQE(sampler, ansatz, optimizer, *, initial_point=None, aggregation=None, callback=None)
Bases: VariationalAlgorithm
, SamplingMinimumEigensolver
The Variational Quantum Eigensolver algorithm, optimized for diagonal Hamiltonians.
VQE is a hybrid quantum-classical algorithm that uses a variational technique to find the minimum eigenvalue of a given diagonal Hamiltonian operator .
In contrast to the VQE
class, the SamplingVQE
algorithm is executed using a sampler
primitive.
An instance of SamplingVQE
also requires an ansatz
, a parameterized QuantumCircuit
, to prepare the trial state . It also needs a classical optimizer
which varies the circuit parameters to minimize the objective function, which depends on the chosen aggregation
.
The optimizer can either be one of Qiskit’s optimizers, such as SPSA
or a callable with the following signature:
from qiskit.algorithms.optimizers import OptimizerResult
def my_minimizer(fun, x0, jac=None, bounds=None) -> OptimizerResult:
# Note that the callable *must* have these argument names!
# Args:
# fun (callable): the function to minimize
# x0 (np.ndarray): the initial point for the optimization
# jac (callable, optional): the gradient of the objective function
# bounds (list, optional): a list of tuples specifying the parameter bounds
result = OptimizerResult()
result.x = # optimal parameters
result.fun = # optimal function value
return result
The above signature also allows one to use any SciPy minimizer, for instance as
from functools import partial
from scipy.optimize import minimize
optimizer = partial(minimize, method="L-BFGS-B")
The following attributes can be set via the initializer but can also be read and updated once the SamplingVQE
object has been constructed.
sampler
ansatz
optimizer
A classical optimizer to find the minimum energy. This can either be a Qiskit Optimizer
or a callable implementing the Minimizer
protocol.
Type
aggregation
A float or callable to specify how the objective function evaluated on the basis states should be aggregated. If a float, this specifies the parameter for a CVaR expectation value [1]. If a callable, it takes a list of basis state measurements specified as [(probability, objective_value)]
and return an objective value as float. If None, all an ordinary expectation value is calculated.
Type
float | Callable[[list[tuple[float, complex]], float] | None
callback
A callback that can access the intermediate data at each optimization step. These data are: the evaluation count, the optimizer parameters for the ansatz, the evaluated value, and the metadata dictionary.
Type
Callable[[int, np.ndarray, float, dict[str, Any]], None] | None
References
[1]: Barkoutsos, P. K., Nannicini, G., Robert, A., Tavernelli, I., and Woerner, S.,
“Improving Variational Quantum Optimization using CVaR” arXiv:1907.04769
Parameters
- sampler (BaseSampler) – The sampler primitive to sample the circuits.
- ansatz (QuantumCircuit) – A parameterized quantum circuit to prepare the trial state.
- optimizer (Optimizer |Minimizer) – A classical optimizer to find the minimum energy. This can either be a Qiskit
Optimizer
or a callable implementing theMinimizer
protocol. - initial_point (Sequence[float] | None) – An optional initial point (i.e. initial parameter values) for the optimizer. The length of the initial point must match the number of
ansatz
parameters. IfNone
, a random point will be generated within certain parameter bounds.SamplingVQE
will look to the ansatz for these bounds. If the ansatz does not specify bounds, bounds of , will be used. - aggregation (float | Callable[[list[float]], float] | None) – A float or callable to specify how the objective function evaluated on the basis states should be aggregated.
- callback (Callable[[int, np.ndarray, float, dict[str, Any]], None] | None) – A callback that can access the intermediate data at each optimization step. These data are: the evaluation count, the optimizer parameters for the ansatz, the estimated value, and the metadata dictionary.
Attributes
initial_point
Return the initial point.
Methods
compute_minimum_eigenvalue
compute_minimum_eigenvalue(operator, aux_operators=None)
Compute the minimum eigenvalue of a diagonal operator.
Parameters
- operator (BaseOperator | PauliSumOp) – Diagonal qubit operator.
- aux_operators (ListOrDict[BaseOperator | PauliSumOp] | None) – Optional list of auxiliary operators to be evaluated with the final state.
Returns
A SamplingMinimumEigensolverResult
containing the optimization result.
Return type
supports_aux_operators
classmethod supports_aux_operators()
Whether computing the expectation value of auxiliary operators is supported.
If the minimum eigensolver computes an eigenstate of the main operator then it can compute the expectation value of the aux_operators for that state. Otherwise they will be ignored.
Returns
True if aux_operator expectations can be evaluated, False otherwise
Return type