Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK Go to the latest version
Important

IBM Quantum Platform is moving and this version will be sunset on July 1. To get started on the new platform, read the migration guide.

Options

class Options(**kwargs)

GitHub

Bases: Mapping

Base options object

This class is what all backend options are based on. The properties of the class are intended to be all dynamically adjustable so that a user can reconfigure the backend on demand. If a property is immutable to the user (eg something like number of qubits) that should be a configuration of the backend class itself instead of the options.

Instances of this class behave like dictionaries. Accessing an option with a default value can be done with the get() method:

>>> options = Options(opt1=1, opt2=2)
>>> options.get("opt1")
1
>>> options.get("opt3", default="hello")
'hello'

Key-value pairs for all options can be retrieved using the items() method:

>>> list(options.items())
[('opt1', 1), ('opt2', 2)]

Options can be updated by name:

>>> options["opt1"] = 3
>>> options.get("opt1")
3

Runtime validators can be registered. See set_validator. Updates through update_options and indexing (__setitem__) validate the new value before peforming the update and raise ValueError if the new value is invalid.

>>> options.set_validator("opt1", (1, 5))
>>> options["opt1"] = 4
>>> options["opt1"]
4
>>> options["opt1"] = 10  
Traceback (most recent call last):
...
ValueError: ...

Methods

get

Options.get(k[, d]) → D[k] if k in D, else d.  d defaults to None.

items

Options.items() → a set-like object providing a view on D's items

keys

Options.keys() → a set-like object providing a view on D's keys

set_validator

Options.set_validator(field, validator_value)

Set an optional validator for a field in the options

Setting a validator enables changes to an options values to be validated for correctness when update_options() is called. For example if you have a numeric field like shots you can specify a bounds tuple that set an upper and lower bound on the value such as:

options.set_validator("shots", (1, 4096))

In this case whenever the "shots" option is updated by the user it will enforce that the value is >=1 and <=4096. A ValueError will be raised if it’s outside those bounds. If a validator is already present for the specified field it will be silently overriden.

Parameters

  • field (str) – The field name to set the validator on
  • validator_value (list or tuple or type) – The value to use for the validator depending on the type indicates on how the value for a field is enforced. If a tuple is passed in it must have a length of two and will enforce the min and max value (inclusive) for an integer or float value option. If it’s a list it will list the valid values for a field. If it’s a type the validator will just enforce the value is of a certain type.

Raises

  • KeyError – If field is not present in the options object
  • ValueError – If the validator_value has an invalid value for a given type
  • TypeError – If validator_value is not a valid type

update_options

Options.update_options(**fields)

Update options with kwargs

values

Options.values() → an object providing a view on D's values


Attributes

validator

Was this page helpful?
Report a bug or request content on GitHub.