PhaseOracle
class PhaseOracle(expression, synthesizer=None)
Bases: qiskit.circuit.quantumcircuit.QuantumCircuit
Phase Oracle.
The Phase Oracle object constructs circuits for any arbitrary input logical expressions. A logical expression is composed of logical operators & (AND), | (OR), ~ (NOT), and ^ (XOR). as well as symbols for literals (variables). For example, ‘a & b’, and (v0 | ~v1) & (~v2 & v3) are both valid string representation of boolean logical expressions.
For convenience, this oracle, in addition to parsing arbitrary logical expressions, also supports input strings in the DIMACS CNF format, which is the standard format for specifying SATisfiability (SAT) problem instances in Conjunctive Normal Form (CNF), which is a conjunction of one or more clauses, where a clause is a disjunction of one or more literals. See qiskit.circuit.library.phase_oracle.PhaseOracle.from_dimacs_file()
.
From 16 variables on, possible performance issues should be expected when using the default synthesizer.
Creates a PhaseOracle object
Parameters
- expression (
Union
[str
,ClassicalElement
]) – A Python-like boolean expression. - synthesizer (
Optional
[Callable
[[BooleanExpression
],QuantumCircuit
]]) – Optional. A function to convert a BooleanExpression into a QuantumCircuit If None is provided, Tweedledum’s pkrm_synth with phase_esop will be used.
Methods Defined Here
evaluate_bitstring
PhaseOracle.evaluate_bitstring(bitstring)
Evaluate the oracle on a bitstring. This evaluation is done classically without any quantum circuit.
Parameters
bitstring (str
) – The bitstring for which to evaluate. The input bitstring is expected to be in little-endian order.
Return type
bool
Returns
True if the bitstring is a good state, False otherwise.
from_dimacs_file
classmethod PhaseOracle.from_dimacs_file(filename)
Create a PhaseOracle from the string in the DIMACS format.
It is possible to build a PhaseOracle from a file in DIMACS CNF format, which is the standard format for specifying SATisfiability (SAT) problem instances in Conjunctive Normal Form (CNF), which is a conjunction of one or more clauses, where a clause is a disjunction of one or more literals.
The following is an example of a CNF expressed in the DIMACS format:
c DIMACS CNF file with 3 satisfying assignments: 1 -2 3, -1 -2 -3, 1 2 -3.
p cnf 3 5
-1 -2 -3 0
1 -2 3 0
1 2 -3 0
1 -2 -3 0
-1 2 3 0
The first line, following the c character, is a comment. The second line specifies that the CNF is over three boolean variables — let us call them , and contains five clauses. The five clauses, listed afterwards, are implicitly joined by the logical AND operator, , while the variables in each clause, represented by their indices, are implicitly disjoined by the logical OR operator, . The symbol preceding a boolean variable index corresponds to the logical NOT operator, . Character 0 (zero) marks the end of each clause. Essentially, the code above corresponds to the following CNF:
.
Parameters
filename (str
) – A file in DIMACS format.
Returns
A quantum circuit with a phase oracle.
Return type
Attributes
ancillas
Returns a list of ancilla bits in the order that the registers were added.
Return type
List
[AncillaQubit
]
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}
Return type
dict
clbits
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the CircuitInstruction
s for each instruction.
Return type
QuantumCircuitData
extension_lib
Default value: 'include "qelib1.inc";'
global_phase
header
Default value: 'OPENQASM 2.0;'
instances
Default value: 2243
metadata
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
Return type
dict
num_ancillas
Return the number of ancilla qubits.
Return type
int
num_clbits
Return number of classical bits.
Return type
int
num_parameters
The number of parameter objects in the circuit.
Return type
int
num_qubits
Return number of qubits.
Return type
int
op_start_times
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
Return type
List
[int
]
Returns
List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data
.
Raises
AttributeError – When circuit is not scheduled.
parameters
The parameters defined in the circuit.
This attribute returns the Parameter
objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector
are still sorted numerically.
Examples
The snippet below shows that insertion order of parameters does not matter.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unituitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a ParameterVector
can be used.
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
Return type
ParameterView
Returns
The sorted Parameter
objects in the circuit.
prefix
Default value: 'circuit'