ControlledGate
class ControlledGate(name, num_qubits, params, label=None, num_ctrl_qubits=1, definition=None, ctrl_state=None, base_gate=None)
Bases: qiskit.circuit.gate.Gate
Controlled unitary gate.
Create a new ControlledGate. In the new gate the first num_ctrl_qubits
of the gate are the controls.
Parameters
- name (
str
) – The name of the gate. - num_qubits (
int
) – The number of qubits the gate acts on. - params (
List
) – A list of parameters for the gate. - label (
Optional
[str
]) – An optional label for the gate. - num_ctrl_qubits (
Optional
[int
]) – Number of control qubits. - definition (
Optional
[QuantumCircuit
]) – A list of gate rules for implementing this gate. The elements of the list are tuples of (Gate()
, [qubit_list], [clbit_list]). - ctrl_state (
Union
[str
,int
,None
]) – The control state in decimal or as a bitstring (e.g. ‘111’). If specified as a bitstring the length must equal num_ctrl_qubits, MSB on left. If None, use 2**num_ctrl_qubits-1. - base_gate (
Optional
[Gate
]) – Gate object to be controlled.
Raises
- CircuitError – If
num_ctrl_qubits
>=num_qubits
. - CircuitError – ctrl_state < 0 or ctrl_state > 2**num_ctrl_qubits.
Examples:
Create a controlled standard gate and apply it to a circuit.
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library.standard_gates import HGate
qr = QuantumRegister(3)
qc = QuantumCircuit(qr)
c3h_gate = HGate().control(2)
qc.append(c3h_gate, qr)
qc.draw('mpl')
Create a controlled custom gate and apply it to a circuit.
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library.standard_gates import HGate
qc1 = QuantumCircuit(2)
qc1.x(0)
qc1.h(1)
custom = qc1.to_gate().control(2)
qc2 = QuantumCircuit(4)
qc2.append(custom, [0, 3, 1, 2])
qc2.draw('mpl')
Methods
add_decomposition
ControlledGate.add_decomposition(decomposition)
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
assemble
ControlledGate.assemble()
Assemble a QasmQobjInstruction
broadcast_arguments
ControlledGate.broadcast_arguments(qargs, cargs)
Validation and handling of the arguments and its relationship.
For example, cx([q[0],q[1]], q[2])
means cx(q[0], q[2]); cx(q[1], q[2])
. This method yields the arguments in the right grouping. In the given example:
in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
[q[1], q[2]], []
The general broadcasting rules are:
If len(qargs) == 1:
[q[0], q[1]] -> [q[0]],[q[1]]
If len(qargs) == 2:
[[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]] [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]] [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
If len(qargs) >= 3:
[q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
Parameters
- qargs (
List
) – List of quantum bit arguments. - cargs (
List
) – List of classical bit arguments.
Return type
Tuple
[List
, List
]
Returns
A tuple with single arguments.
Raises
CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.
c_if
ControlledGate.c_if(classical, val)
Set a classical equality condition on this instruction between the register or cbit classical
and value val
.
This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.
control
ControlledGate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)
Return controlled version of gate. See ControlledGate
for usage.
Parameters
- num_ctrl_qubits (
int
) – number of controls to add to gate (default=1) - label (
Optional
[str
]) – optional gate label - ctrl_state (
Union
[str
,int
,None
]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.
Returns
Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.
Return type
Raises
QiskitError – unrecognized mode or invalid ctrl_state
copy
ControlledGate.copy(name=None)
Copy of the instruction.
Parameters
name (str) – name to be given to the copied circuit, if None then the name stays the same.
Returns
a copy of the current instruction, with the name
updated if it was provided
Return type
inverse
ControlledGate.inverse()
Invert this gate by calling inverse on the base gate.
Return type
is_parameterized
ControlledGate.is_parameterized()
Return True .IFF. instruction is parameterized else False
power
ControlledGate.power(exponent)
Creates a unitary gate as gate^exponent.
Parameters
exponent (float) – Gate^exponent
Returns
To which to_matrix is self.to_matrix^exponent.
Return type
Raises
CircuitError – If Gate is not unitary
qasm
ControlledGate.qasm()
Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).
repeat
ControlledGate.repeat(n)
Creates an instruction with gate repeated n amount of times.
Parameters
n (int) – Number of times to repeat the instruction
Returns
Containing the definition.
Return type
Raises
CircuitError – If n < 1.
reverse_ops
ControlledGate.reverse_ops()
For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions. It does not invert any gate.
Returns
a new instruction with
sub-instructions reversed.
Return type
soft_compare
ControlledGate.soft_compare(other)
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
Parameters
other (instruction) – other instruction.
Returns
are self and other equal up to parameter expressions.
Return type
bool
to_matrix
ControlledGate.to_matrix()
Return a Numpy.array for the gate unitary matrix.
Returns
if the Gate subclass has a matrix definition.
Return type
np.ndarray
Raises
CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.
validate_parameter
ControlledGate.validate_parameter(parameter)
Gate parameters should be int, float, or ParameterExpression
Attributes
condition_bits
ctrl_state
Return the control state of the gate as a decimal integer.
Return type
int
decompositions
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
definition
Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl_state, the returned definition is conjugated with X without changing the internal _definition.
Return type
List
duration
Get the duration.
label
Return instruction label
Return type
str
name
Get name of gate. If the gate has open controls the gate name will become:
<original_name_o<ctrl_state>
where <original_name> is the gate name for the default case of closed control qubits and <ctrl_state> is the integer value of the control state for the gate.
Return type
str
num_clbits
Return the number of clbits.
num_ctrl_qubits
Get number of control qubits.
Returns
The number of control qubits for the gate.
Return type
int
num_qubits
Return the number of qubits.
params
Get parameters from base_gate.
Returns
List of gate parameters.
Return type
list
Raises
CircuitError – Controlled gate does not define a base gate
unit
Get the time unit of duration.