Skip to main contentIBM Quantum Documentation
You are viewing the API reference for an old version of Qiskit SDK. Switch to latest version

Transpiler Passes


Layout Selection (Placement)

SetLayout(*args, **kwargs)Set the layout property to the given layout.
TrivialLayout(*args, **kwargs)Choose a Layout by assigning n circuit qubits to device qubits 0, .., n-1.
DenseLayout(*args, **kwargs)Choose a Layout by finding the most connected subset of qubits.
NoiseAdaptiveLayout(*args, **kwargs)Choose a noise-adaptive Layout based on current calibration data for the backend.
SabreLayout(*args, **kwargs)Choose a Layout via iterative bidirectional routing of the input circuit.
CSPLayout(*args, **kwargs)If possible, chooses a Layout as a CSP, using backtracking.
VF2Layout(*args, **kwargs)A pass for choosing a Layout of a circuit onto a Coupling graph, as a a subgraph isomorphism problem, solved by VF2++.
ApplyLayout(*args, **kwargs)Transform a circuit with virtual qubits into a circuit with physical qubits.
Layout2qDistance(*args, **kwargs)Evaluate how good the layout selection was.
EnlargeWithAncilla(*args, **kwargs)Extend the dag with virtual qubits that are in layout but not in the circuit yet.
FullAncillaAllocation(*args, **kwargs)Allocate all idle nodes from the coupling map as ancilla on the layout.


BasicSwap(*args, **kwargs)Map (with minimum effort) a DAGCircuit onto a coupling_map adding swap gates.
LookaheadSwap(*args, **kwargs)Map input circuit onto a backend topology via insertion of SWAPs.
StochasticSwap(*args, **kwargs)Map a DAGCircuit onto a coupling_map adding swap gates.
SabreSwap(*args, **kwargs)Map input circuit onto a backend topology via insertion of SWAPs.
BIPMapping(*args, **kwargs)Map a DAGCircuit onto a given coupling_map, allocating qubits and adding swap gates.
Commuting2qGateRouter([swap_strategy, ...])A class to swap route one or more commuting gates to the coupling map.

Basis Change

Unroller(*args, **kwargs)Unroll a circuit to a given basis.
Unroll3qOrMore(*args, **kwargs)Recursively expands 3q+ gates until the circuit only contains 2q or 1q gates.
Decompose([gates_to_decompose])Expand a gate in a circuit using its decomposition rules.
UnrollCustomDefinitions(*args, **kwargs)Unrolls instructions with custom definitions.
BasisTranslator(*args, **kwargs)Translates gates to a target basis by searching for a set of translations from a given EquivalenceLibrary.
TranslateParameterizedGates([...])Translate parameterized gates to a supported basis set.


Optimize1qGates(*args, **kwargs)Optimize chains of single-qubit u1, u2, u3 gates by combining them into a single gate.
Optimize1qGatesDecomposition(*args, **kwargs)Optimize chains of single-qubit gates by combining them into a single gate.
Collect1qRuns(*args, **kwargs)Collect one-qubit subcircuits.
Collect2qBlocks(*args, **kwargs)Collect two-qubit subcircuits.
CollectMultiQBlocks(*args, **kwargs)Collect sequences of uninterrupted gates acting on groups of qubits.
CollectLinearFunctions(*args, **kwargs)Collect blocks of linear gates (CXGate and SwapGate gates) and replaces them by linear functions (LinearFunction).
CollectCliffords(*args, **kwargs)Collects blocks of Clifford gates and replaces them by a Clifford object.
CollectAndCollapse(*args, **kwargs)A general transpiler pass to collect and to consolidate blocks of nodes in a circuit.
ConsolidateBlocks(*args, **kwargs)Replace each block of consecutive gates by a single Unitary node.
CXCancellation(*args, **kwargs)Cancel back-to-back cx gates in dag.
InverseCancellation(gates_to_cancel)Cancel specific Gates which are inverses of each other when they occur back-to- back.
CommutationAnalysis(*args, **kwargs)Analysis pass to find commutation relations between DAG nodes.
CommutativeCancellation(*args, **kwargs)Cancel the redundant (self-adjoint) gates through commutation relations.
CommutativeInverseCancellation(*args, **kwargs)Cancel pairs of inverse gates exploiting commutation relations.
Optimize1qGatesSimpleCommutation(*args, **kwargs)Optimizes 1Q gate strings interrupted by 2Q gates by commuting the components and re- synthesizing the results.
RemoveDiagonalGatesBeforeMeasure(*args, **kwargs)Remove diagonal gates (including diagonal 2Q gates) before a measurement.
RemoveResetInZeroState(*args, **kwargs)Remove reset gate when the qubit is in zero state.
CrosstalkAdaptiveSchedule(*args, **kwargs)Crosstalk mitigation through adaptive instruction scheduling.
HoareOptimizer(*args, **kwargs)This is a transpiler pass using Hoare logic circuit optimization.
TemplateOptimization(*args, **kwargs)Class for the template optimization pass.
EchoRZXWeylDecomposition(*args, **kwargs)Rewrite two-qubit gates using the Weyl decomposition.
ResetAfterMeasureSimplification(*args, **kwargs)This pass replaces reset after measure with a conditional X gate.
OptimizeCliffords(*args, **kwargs)Combine consecutive Cliffords over the same qubits.


PulseGates(inst_map)Pulse gate adding pass.
RZXCalibrationBuilder([...])Creates calibrations for RZXGate(theta) by stretching and compressing Gaussian square pulses in the CX gate.
RZXCalibrationBuilderNoEcho([...])Creates calibrations for RZXGate(theta) by stretching and compressing Gaussian square pulses in the CX gate.


TimeUnitConversion(inst_durations)Choose a time unit to be used in the following time-aware passes, and make all circuit time units consistent with that.
ALAPScheduleAnalysis(durations)ALAP Scheduling pass, which schedules the stop time of instructions as late as possible.
ASAPScheduleAnalysis(durations)ASAP Scheduling pass, which schedules the start time of instructions as early as possible..
PadDynamicalDecoupling(durations, dd_sequence)Dynamical decoupling insertion pass.
PadDelay([fill_very_end])Padding idle time with Delay instructions.
ConstrainedReschedule([acquire_alignment, ...])Rescheduler pass that updates node start times to conform to the hardware alignments.
AlignMeasures([alignment])Measurement alignment.
ValidatePulseGates([granularity, min_length])Check custom gate length.
InstructionDurationCheck([...])Duration validation pass for reschedule.
SetIOLatency([clbit_write_latency, ...])Set IOLatency information to the input circuit.
ALAPSchedule(*args, **kwargs)ALAP Scheduling pass, which schedules the stop time of instructions as late as possible.
ASAPSchedule(*args, **kwargs)ASAP Scheduling pass, which schedules the start time of instructions as early as possible..
DynamicalDecoupling(*args, **kwargs)Dynamical decoupling insertion pass.

Circuit Analysis

Width(*args, **kwargs)Calculate the width of a DAG circuit.
Depth(*args, **kwargs)Calculate the depth of a DAG circuit.
Size(*args, **kwargs)Calculate the size of a DAG circuit.
CountOps(*args, **kwargs)Count the operations in a DAG circuit.
CountOpsLongestPath(*args, **kwargs)Count the operations on the longest path in a DAGcircuit.
NumTensorFactors(*args, **kwargs)Calculate the number of tensor factors of a DAG circuit.
DAGLongestPath(*args, **kwargs)Return the longest path in a DAGcircuit as a list of DAGOpNodes, DAGInNodes, and DAGOutNodes.


UnitarySynthesis([basis_gates, ...])Synthesize gates according to their basis gates.
LinearFunctionsSynthesis(*args, **kwargs)DEPRECATED: Synthesize linear functions.
LinearFunctionsToPermutations(*args, **kwargs)Promotes linear functions to permutations when possible.
HighLevelSynthesis(*args, **kwargs)Synthesize higher-level objects by choosing the appropriate synthesis method based on the object's name and the high-level-synthesis config of type HLSConfig (if provided).
SolovayKitaev([recursion_degree, ...])Approximately decompose 1q gates to a discrete basis using the Solovay-Kitaev algorithm.
SolovayKitaevSynthesis()A Solovay-Kitaev Qiskit unitary synthesis plugin.

Synthesis Plugins

SolovayKitaevSynthesis()A Solovay-Kitaev Qiskit unitary synthesis plugin.
BasicSynthesisPermutation()The permutation synthesis plugin based on sorting.
ACGSynthesisPermutation()The permutation synthesis plugin based on the Alon, Chung, Graham method.
KMSSynthesisPermutation()The permutation synthesis plugin based on the Kutin, Moulton, Smithline method.

Post Layout (Post transpile qubit selection)

VF2PostLayout(*args, **kwargs)A pass for choosing a Layout after transpilation of a circuit onto a Coupling graph, as a subgraph isomorphism problem, solved by VF2++.

Additional Passes

CheckMap(*args, **kwargs)Check if a DAG circuit is already mapped to a coupling map.
CheckCXDirection(*args, **kwargs)Deprecated: use qiskit.transpiler.passes.CheckGateDirection pass instead.
CheckGateDirection(*args, **kwargs)Check if the two-qubit gates follow the right direction with respect to the coupling map.
CXDirection(*args, **kwargs)Deprecated: use qiskit.transpiler.passes.GateDirection pass instead.
GateDirection(*args, **kwargs)Modify asymmetric gates to match the hardware coupling direction.
MergeAdjacentBarriers(*args, **kwargs)Return a circuit with any adjacent barriers merged together.
RemoveBarriers(*args, **kwargs)Return a circuit with any barrier removed.
BarrierBeforeFinalMeasurements(*args, **kwargs)Add a barrier before final measurements.
RemoveFinalMeasurements(*args, **kwargs)Remove final measurements and barriers at the end of a circuit.
DAGFixedPoint(*args, **kwargs)Check if the DAG has reached a fixed point.
FixedPoint(*args, **kwargs)Check if a property reached a fixed point.
ContainsInstruction(instruction_name[, recurse])An analysis pass to detect if the DAG contains a specific instruction.
GatesInBasis(*args, **kwargs)Check if all gates in a DAG are in a given set of gates
ConvertConditionsToIfOps(*args, **kwargs)Convert instructions whose condition attribute is set to a non-None value into the equivalent single-statement IfElseBlock.
Was this page helpful?
Report a bug or request content on GitHub.