PauliList
class PauliList(data)
Bases: qiskit.quantum_info.operators.symplectic.base_pauli.BasePauli
, qiskit.quantum_info.operators.mixins.linear.LinearMixin
, qiskit.quantum_info.operators.mixins.group.GroupMixin
List of N-qubit Pauli operators.
This class is an efficient representation of a list of Pauli
operators. It supports 1D numpy array indexing returning a Pauli
for integer indexes or a PauliList
for slice or list indices.
Initialization
A PauliList object can be initialized in several ways.
PauliList(list[str])
where strings are same representation with
Pauli
.
PauliList(Pauli) and PauliList(list[Pauli])
where Pauli is
Pauli
.
PauliList.from_symplectic(z, x, phase)
where
z
andx
are 2 dimensional booleannumpy.ndarrays
andphase
is an integer in[0, 1, 2, 3]
.
For example,
import numpy as np
from qiskit.quantum_info import Pauli, PauliList
# 1. init from list[str]
pauli_list = PauliList(["II", "+ZI", "-iYY"])
print("1. ", pauli_list)
pauli1 = Pauli("iXI")
pauli2 = Pauli("iZZ")
# 2. init from Pauli
print("2. ", PauliList(pauli1))
# 3. init from list[Pauli]
print("3. ", PauliList([pauli1, pauli2]))
# 4. init from np.ndarray
z = np.array([[True, True], [False, False]])
x = np.array([[False, True], [True, False]])
phase = np.array([0, 1])
pauli_list = PauliList.from_symplectic(z, x, phase)
print("4. ", pauli_list)
1. ['II', 'ZI', '-iYY']
2. ['iXI']
3. ['iXI', 'iZZ']
4. ['YZ', '-iIX']
Data Access
The individual Paulis can be accessed and updated using the []
operator which accepts integer, lists, or slices for selecting subsets of PauliList. If integer is given, it returns Pauli not PauliList.
pauli_list = PauliList(["XX", "ZZ", "IZ"])
print("Integer: ", repr(pauli_list[1]))
print("List: ", repr(pauli_list[[0, 2]]))
print("Slice: ", repr(pauli_list[0:2]))
Integer: Pauli('ZZ')
List: PauliList(['XX', 'IZ'])
Slice: PauliList(['XX', 'ZZ'])
Iteration
Rows in the Pauli table can be iterated over like a list. Iteration can also be done using the label or matrix representation of each row using the label_iter()
and matrix_iter()
methods.
Initialize the PauliList.
Parameters
data (Pauli or list) – input data for Paulis. If input is a list each item in the list must be a Pauli object or Pauli str.
Raises
QiskitError – if input array is invalid shape.
Additional Information:
The input array is not copied so multiple Pauli tables can share the same underlying array.
Methods
adjoint
PauliList.adjoint()
Return the adjoint of each Pauli in the list.
anticommutes
PauliList.anticommutes(other, qargs=None)
Return True if other Pauli that anticommutes with other.
Parameters
- other (PauliList) – another PauliList operator.
- qargs (list) – qubits to apply dot product on (default: None).
Returns
True if Pauli’s anticommute, False if they commute.
Return type
bool
anticommutes_with_all
PauliList.anticommutes_with_all(other)
Return indexes of rows that commute other.
If other is a multi-row Pauli list the returned vector indexes rows of the current PauliList that anti-commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
Parameters
other (PauliList) – a single Pauli or multi-row PauliList.
Returns
index array of the anti-commuting rows.
Return type
array
argsort
PauliList.argsort(weight=False, phase=False)
Return indices for sorting the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
Parameters
- weight (bool) – Optionally sort by weight if True (Default: False).
- phase (bool) – Optionally sort by phase before weight or order (Default: False).
Returns
the indices for sorting the table.
Return type
array
commutes
PauliList.commutes(other, qargs=None)
Return True for each Pauli that commutes with other.
Parameters
- other (PauliList) – another PauliList operator.
- qargs (list) – qubits to apply dot product on (default: None).
Returns
True if Pauli’s commute, False if they anti-commute.
Return type
bool
commutes_with_all
PauliList.commutes_with_all(other)
Return indexes of rows that commute other.
If other is a multi-row Pauli list the returned vector indexes rows of the current PauliList that commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
Parameters
other (PauliList) – a single Pauli or multi-row PauliList.
Returns
index array of the commuting rows.
Return type
array
compose
PauliList.compose(other, qargs=None, front=False, inplace=False)
Return the composition self∘other for each Pauli in the list.
Parameters
- other (PauliList) – another PauliList.
- qargs (None or list) – qubits to apply dot product on (Default: None).
- front (bool) – If True use dot composition method [default: False].
- inplace (bool) – If True update in-place (default: False).
Returns
the list of composed Paulis.
Return type
Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list, or has the wrong number of qubits for the specified qargs.
conjugate
PauliList.conjugate()
Return the conjugate of each Pauli in the list.
copy
PauliList.copy()
Make a deep copy of current operator.
delete
PauliList.delete(ind, qubit=False)
Return a copy with Pauli rows deleted from table.
When deleting qubits the qubit index is the same as the column index of the underlying X
and Z
arrays.
Parameters
- ind (int or list) – index(es) to delete.
- qubit (bool) – if True delete qubit columns, otherwise delete Pauli rows (Default: False).
Returns
the resulting table with the entries removed.
Return type
Raises
QiskitError – if ind is out of bounds for the array size or number of qubits.
dot
PauliList.dot(other, qargs=None, inplace=False)
Return the composition other∘self for each Pauli in the list.
Parameters
- other (PauliList) – another PauliList.
- qargs (None or list) – qubits to apply dot product on (Default: None).
- inplace (bool) – If True update in-place (default: False).
Returns
the list of composed Paulis.
Return type
Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list, or has the wrong number of qubits for the specified qargs.
equiv
PauliList.equiv(other)
Entrywise comparison of Pauli equivalence up to global phase.
Parameters
other (PauliList orPauli) – a comparison object.
Returns
An array of True or False for entrywise equivalence
of the current table.
Return type
np.ndarray
evolve
PauliList.evolve(other, qargs=None, frame='h')
Evolve the Pauli by a Clifford.
This returns the Pauli .
By choosing the parameter frame=’s’, this function returns the Schrödinger evolution of the Pauli . This option yields a faster calculation.
Parameters
- other (Pauli orClifford orQuantumCircuit) – The Clifford operator to evolve by.
- qargs (list) – a list of qubits to apply the Clifford to.
- frame (string) – ‘h’ for Heisenberg or ‘s’ for Schrödinger framework.
Returns
the Pauli .
Return type
Raises
QiskitError – if the Clifford number of qubits and qargs don’t match.
expand
PauliList.expand(other)
Return the expand product of each Pauli in the list.
Parameters
other (PauliList) – another PauliList.
Returns
the list of tensor product Paulis.
Return type
Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list.
from_symplectic
classmethod PauliList.from_symplectic(z, x, phase=0)
Construct a PauliList from a symplectic data.
Parameters
- z (np.ndarray) – 2D boolean Numpy array.
- x (np.ndarray) – 2D boolean Numpy array.
- phase (np.ndarray or None) – Optional, 1D integer array from Z_4.
Returns
the constructed PauliList.
Return type
group_commuting
PauliList.group_commuting(qubit_wise=False)
Partition a PauliList into sets of commuting Pauli strings.
Parameters
qubit_wise (bool) –
whether the commutation rule is applied to the whole operator, or on a per-qubit basis. For example:
>>> from qiskit.quantum_info import PauliList
>>> op = PauliList(["XX", "YY", "IZ", "ZZ"])
>>> op.group_commuting()
[PauliList(['XX', 'YY']), PauliList(['IZ', 'ZZ'])]
>>> op.group_commuting(qubit_wise=True)
[PauliList(['XX']), PauliList(['YY']), PauliList(['IZ', 'ZZ'])]
Returns
List of PauliLists where each PauliList contains commuting Pauli operators.
Return type
List[PauliList]
group_qubit_wise_commuting
PauliList.group_qubit_wise_commuting()
Partition a PauliList into sets of mutually qubit-wise commuting Pauli strings.
Returns
List of PauliLists where each PauliList contains commutable Pauli operators.
Return type
List[PauliList]
input_dims
PauliList.input_dims(qargs=None)
Return tuple of input dimension for specified subsystems.
insert
PauliList.insert(ind, value, qubit=False)
Insert Pauli’s into the table.
When inserting qubits the qubit index is the same as the column index of the underlying X
and Z
arrays.
Parameters
- ind (int) – index to insert at.
- value (PauliList) – values to insert.
- qubit (bool) – if True delete qubit columns, otherwise delete Pauli rows (Default: False).
Returns
the resulting table with the entries inserted.
Return type
Raises
QiskitError – if the insertion index is invalid.
inverse
PauliList.inverse()
Return the inverse of each Pauli in the list.
label_iter
PauliList.label_iter()
Return a label representation iterator.
This is a lazy iterator that converts each row into the string label only as it is used. To convert the entire table to labels use the to_labels()
method.
Returns
label iterator object for the PauliList.
Return type
LabelIterator
matrix_iter
PauliList.matrix_iter(sparse=False)
Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used. To convert the entire table to matrices use the to_matrix()
method.
Parameters
sparse (bool) – optionally return sparse CSR matrices if True, otherwise return Numpy array matrices (Default: False)
Returns
matrix iterator object for the PauliList.
Return type
MatrixIterator
output_dims
PauliList.output_dims(qargs=None)
Return tuple of output dimension for specified subsystems.
power
PauliList.power(n)
Return the compose of a operator with itself n times.
Parameters
n (int) – the number of times to compose with self (n>0).
Returns
the n-times composed operator.
Return type
Raises
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
reshape
PauliList.reshape(input_dims=None, output_dims=None, num_qubits=None)
Return a shallow copy with reshaped input and output subsystem dimensions.
Parameters
- input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
- output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
- num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
Returns
returns self with reshaped input and output dimensions.
Return type
BaseOperator
Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
sort
PauliList.sort(weight=False, phase=False)
Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
Example
Consider sorting all a random ordering of all 2-qubit Paulis
from numpy.random import shuffle
from qiskit.quantum_info.operators import PauliList
# 2-qubit labels
labels = ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ',
'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ']
# Shuffle Labels
shuffle(labels)
pt = PauliList(labels)
print('Initial Ordering')
print(pt)
# Lexicographic Ordering
srt = pt.sort()
print('Lexicographically sorted')
print(srt)
# Weight Ordering
srt = pt.sort(weight=True)
print('Weight sorted')
print(srt)
Initial Ordering
['ZX', 'ZI', 'XI', 'IX', 'ZY', 'XX', 'YY', 'YX', 'XY', 'XZ', 'YZ', 'IZ',
'IY', 'II', 'YI', 'ZZ']
Lexicographically sorted
['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ',
'ZI', 'ZX', 'ZY', 'ZZ']
Weight sorted
['II', 'IX', 'IY', 'IZ', 'XI', 'YI', 'ZI', 'XX', 'XY', 'XZ', 'YX', 'YY',
'YZ', 'ZX', 'ZY', 'ZZ']
Parameters
- weight (bool) – optionally sort by weight if True (Default: False).
- phase (bool) – Optionally sort by phase before weight or order (Default: False).
Returns
a sorted copy of the original table.
Return type
tensor
PauliList.tensor(other)
Return the tensor product with each Pauli in the list.
Parameters
other (PauliList) – another PauliList.
Returns
the list of tensor product Paulis.
Return type
Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list.
to_labels
PauliList.to_labels(array=False)
Convert a PauliList to a list Pauli string labels.
For large PauliLists converting using the array=True
kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance.
Label | Symplectic | Matrix |
---|
| "I"
| | |
| "X"
| | |
| "Y"
| | |
| "Z"
| | |
Parameters
array (bool) – return a Numpy array if True, otherwise return a list (Default: False).
Returns
The rows of the PauliList in label form.
Return type
list or array
to_matrix
PauliList.to_matrix(sparse=False, array=False)
Convert to a list or array of Pauli matrices.
For large PauliLists converting using the array=True
kwarg will be more efficient since it allocates memory a full rank-3 Numpy array of matrices in advance.
Label | Symplectic | Matrix |
---|
| "I"
| | |
| "X"
| | |
| "Y"
| | |
| "Z"
| | |
Parameters
- sparse (bool) – if True return sparse CSR matrices, otherwise return dense Numpy arrays (Default: False).
- array (bool) – return as rank-3 numpy array if True, otherwise return a list of Numpy arrays (Default: False).
Returns
A list of dense Pauli matrices if array=False and sparse=False. list: A list of sparse Pauli matrices if array=False and sparse=True. array: A dense rank-3 array of Pauli matrices if array=True.
Return type
list
transpose
PauliList.transpose()
Return the transpose of each Pauli in the list.
unique
PauliList.unique(return_index=False, return_counts=False)
Return unique Paulis from the table.
Example
from qiskit.quantum_info.operators import PauliList
pt = PauliList(['X', 'Y', '-X', 'I', 'I', 'Z', 'X', 'iZ'])
unique = pt.unique()
print(unique)
['X', 'Y', '-X', 'I', 'Z', 'iZ']
Parameters
- return_index (bool) – If True, also return the indices that result in the unique array. (Default: False)
- return_counts (bool) – If True, also return the number of times each unique item appears in the table.
Returns
unique
the table of the unique rows.
unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if return_index
is True.
unique_counts: np.array, optional
The number of times each of the unique values comes up in the original array. Only provided if return_counts
is True.
Return type
Attributes
dim
Return tuple (input_shape, output_shape).
num_qubits
Return the number of qubits if a N-qubit operator or None otherwise.
phase
Return the phase exponent of the PauliList.
qargs
Return the qargs for the operator.
settings
Return settings.
shape
The full shape of the array()
size
The number of Pauli rows in the table.
x
The x array for the symplectic representation.
z
The z array for the symplectic representation.