Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

PTM

class PTM(data, input_dims=None, output_dims=None)

GitHub

Bases: qiskit.quantum_info.operators.channel.quantum_channel.QuantumChannel

Pauli Transfer Matrix (PTM) representation of a Quantum Channel.

The PTM representation of an nn-qubit quantum channel E\mathcal{E} is an nn-qubit SuperOp RR defined with respect to vectorization in the Pauli basis instead of column-vectorization. The elements of the PTM RR are given by

Ri,j=Tr[PiE(Pj)]R_{i,j} = \text{Tr}\left[P_i \mathcal{E}(P_j) \right]

where [P0,P1,...,P4n1][P_0, P_1, ..., P_{4^{n}-1}] is the nn-qubit Pauli basis in lexicographic order.

Evolution of a DensityMatrix ρ\rho with respect to the PTM is given by

E(ρ) ⁣P=SPρ ⁣P|\mathcal{E}(\rho)\rangle\!\rangle_P = S_P |\rho\rangle\!\rangle_P

where A ⁣P|A\rangle\!\rangle_P denotes vectorization in the Pauli basis iA ⁣P=Tr[PiA]\langle i | A\rangle\!\rangle_P = \text{Tr}[P_i A].

See reference [1] for further details.

References

  1. C.J. Wood, J.D. Biamonte, D.G. Cory, Tensor networks and graphical calculus for open quantum systems, Quant. Inf. Comp. 15, 0579-0811 (2015). arXiv:1111.6950 [quant-ph]

Initialize a PTM quantum channel operator.

Parameters

  • **(**QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize superoperator.
  • input_dims (tuple) – the input subsystem dimensions. [Default: None]
  • output_dims (tuple) – the output subsystem dimensions. [Default: None]

Raises

QiskitError – if input data is not an N-qubit channel or cannot be initialized as a PTM.

Additional Information:

If the input or output dimensions are None, they will be automatically determined from the input data. The PTM representation is only valid for N-qubit channels.


Methods

adjoint

PTM.adjoint()

Return the adjoint quantum channel.

Note

This is equivalent to the matrix Hermitian conjugate in the SuperOp representation ie. for a channel E\mathcal{E}, the SuperOp of the adjoint channel E\mathcal{{E}}^\dagger is SE=SES_{\mathcal{E}^\dagger} = S_{\mathcal{E}}^\dagger.

compose

PTM.compose(other, qargs=None, front=False)

Return the operator composition with another PTM.

Parameters

  • other (PTM) – a PTM object.
  • qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
  • front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].

Returns

The composed PTM.

Return type

PTM

Raises

QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.

Note

Composition (&) by default is defined as left matrix multiplication for matrix operators, while dot() is defined as right matrix multiplication. That is that A & B == A.compose(B) is equivalent to B.dot(A) when A and B are of the same type.

Setting the front=True kwarg changes this to right matrix multiplication and is equivalent to the dot() method A.dot(B) == A.compose(B, front=True).

conjugate

PTM.conjugate()

Return the conjugate quantum channel.

Note

This is equivalent to the matrix complex conjugate in the SuperOp representation ie. for a channel E\mathcal{E}, the SuperOp of the conjugate channel E\overline{{\mathcal{{E}}}} is SE=SES_{\overline{\mathcal{E}^\dagger}} = \overline{S_{\mathcal{E}}}.

copy

PTM.copy()

Make a deep copy of current operator.

dot

PTM.dot(other, qargs=None)

Return the right multiplied operator self * other.

Parameters

  • other (Operator) – an operator object.
  • qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).

Returns

The right matrix multiplied Operator.

Return type

Operator

expand

PTM.expand(other)

Return the reverse-order tensor product with another PTM.

Parameters

other (PTM) – a PTM object.

Returns

the tensor product bab \otimes a, where aa

is the current PTM, and bb is the other PTM.

Return type

PTM

input_dims

PTM.input_dims(qargs=None)

Return tuple of input dimension for specified subsystems.

is_cp

PTM.is_cp(atol=None, rtol=None)

Test if Choi-matrix is completely-positive (CP)

is_cptp

PTM.is_cptp(atol=None, rtol=None)

Return True if completely-positive trace-preserving (CPTP).

is_tp

PTM.is_tp(atol=None, rtol=None)

Test if a channel is trace-preserving (TP)

is_unitary

PTM.is_unitary(atol=None, rtol=None)

Return True if QuantumChannel is a unitary channel.

output_dims

PTM.output_dims(qargs=None)

Return tuple of output dimension for specified subsystems.

power

PTM.power(n)

Return the power of the quantum channel.

Parameters

n (float) – the power exponent.

Returns

the channel En\mathcal{{E}} ^n.

Return type

SuperOp

Raises

QiskitError – if the input and output dimensions of the SuperOp are not equal.

Note

For non-positive or non-integer exponents the power is defined as the matrix power of the SuperOp representation ie. for a channel E\mathcal{{E}}, the SuperOp of the powered channel En\mathcal{{E}}^n is SEn=SEnS_{{\mathcal{{E}}^n}} = S_{{\mathcal{{E}}}}^n.

reshape

PTM.reshape(input_dims=None, output_dims=None, num_qubits=None)

Return a shallow copy with reshaped input and output subsystem dimensions.

Parameters

  • input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
  • output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
  • num_qubits (None or int) – reshape to an N-qubit operator [Default: None].

Returns

returns self with reshaped input and output dimensions.

Return type

BaseOperator

Raises

QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.

tensor

PTM.tensor(other)

Return the tensor product with another PTM.

Parameters

other (PTM) – a PTM object.

Returns

the tensor product aba \otimes b, where aa

is the current PTM, and bb is the other PTM.

Return type

PTM

Note

The tensor product can be obtained using the ^ binary operator. Hence a.tensor(b) is equivalent to a ^ b.

to_instruction

PTM.to_instruction()

Convert to a Kraus or UnitaryGate circuit instruction.

If the channel is unitary it will be added as a unitary gate, otherwise it will be added as a kraus simulator instruction.

Returns

A kraus instruction for the channel.

Return type

qiskit.circuit.Instruction

Raises

QiskitError – if input data is not an N-qubit CPTP quantum channel.

to_operator

PTM.to_operator()

Try to convert channel to a unitary representation Operator.

transpose

PTM.transpose()

Return the transpose quantum channel.

Note

This is equivalent to the matrix transpose in the SuperOp representation, ie. for a channel E\mathcal{E}, the SuperOp of the transpose channel ET\mathcal{{E}}^T is SmathcalET=SETS_{mathcal{E}^T} = S_{\mathcal{E}}^T.


Attributes

atol

Default value: 1e-08

data

Return data.

dim

Return tuple (input_shape, output_shape).

num_qubits

Return the number of qubits if a N-qubit operator or None otherwise.

qargs

Return the qargs for the operator.

rtol

Default value: 1e-05

settings

Return settings.

Was this page helpful?
Report a bug or request content on GitHub.