Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

RealAmplitudes

class RealAmplitudes(num_qubits=None, entanglement='full', reps=3, skip_unentangled_qubits=False, skip_final_rotation_layer=False, parameter_prefix='θ', insert_barriers=False, initial_state=None, name='RealAmplitudes')

GitHub

Bases: qiskit.circuit.library.n_local.two_local.TwoLocal

The real-amplitudes 2-local circuit.

The RealAmplitudes circuit is a heuristic trial wave function used as Ansatz in chemistry applications or classification circuits in machine learning. The circuit consists of of alternating layers of YY rotations and CXCX entanglements. The entanglement pattern can be user-defined or selected from a predefined set. It is called RealAmplitudes since the prepared quantum states will only have real amplitudes, the complex part is always 0.

For example a RealAmplitudes circuit with 2 repetitions on 3 qubits with 'full' entanglement is

┌──────────┐ ░                 ░ ┌──────────┐ ░                 ░ ┌──────────┐
RY(θ[0]) ├─░───■────■────────░─┤ RY(θ[3]) ├─░───■────■────────░─┤ RY(θ[6])
├──────────┤ ░ ┌─┴─┐  │        ░ ├──────────┤ ░ ┌─┴─┐  │        ░ ├──────────┤
RY(θ[1]) ├─░─┤ X ├──┼────■───░─┤ RY(θ[4]) ├─░─┤ X ├──┼────■───░─┤ RY(θ[7])
├──────────┤ ░ └───┘┌─┴─┐┌─┴─┐ ░ ├──────────┤ ░ └───┘┌─┴─┐┌─┴─┐ ░ ├──────────┤
RY(θ[2]) ├─░──────┤ X ├┤ X ├─░─┤ RY(θ[5]) ├─░──────┤ X ├┤ X ├─░─┤ RY(θ[8])
└──────────┘ ░      └───┘└───┘ ░ └──────────┘ ░      └───┘└───┘ ░ └──────────┘

The entanglement can be set using the entanglement keyword as string or a list of index-pairs. See the documentation of TwoLocal and NLocal for more detail. Additional options that can be set include the number of repetitions, skipping rotation gates on qubits that are not entangled, leaving out the final rotation layer and inserting barriers in between the rotation and entanglement layers.

If some qubits are not entangled with other qubits it makes sense to not apply rotation gates on these qubits, since a sequence of YY rotations can be reduced to a single YY rotation with summed rotation angles.

Examples

>>> ansatz = RealAmplitudes(3, reps=2)  # create the circuit on 3 qubits
>>> print(ansatz)
     ┌──────────┐          ┌──────────┐                      ┌──────────┐
q_0:RY(θ[0]) ├──■────■──┤ RY(θ[3]) ├──────────────■────■──┤ RY(θ[6]) ├────────────
     ├──────────┤┌─┴─┐  │  └──────────┘┌──────────┐┌─┴─┐  │  └──────────┘┌──────────┐
q_1:RY(θ[1]) ├┤ X ├──┼───────■──────┤ RY(θ[4]) ├┤ X ├──┼───────■──────┤ RY(θ[7])
     ├──────────┤└───┘┌─┴─┐   ┌─┴─┐    ├──────────┤└───┘┌─┴─┐   ┌─┴─┐    ├──────────┤
q_2:RY(θ[2]) ├─────┤ X ├───┤ X ├────┤ RY(θ[5]) ├─────┤ X ├───┤ X ├────┤ RY(θ[8])
     └──────────┘     └───┘   └───┘    └──────────┘     └───┘   └───┘    └──────────┘
>>> ansatz = RealAmplitudes(3, entanglement='linear', reps=2, insert_barriers=True)
>>> qc = QuantumCircuit(3)  # create a circuit and append the RY variational form
>>> qc.compose(ansatz, inplace=True)
>>> qc.draw()
     ┌──────────┐ ░            ░ ┌──────────┐ ░            ░ ┌──────────┐
q_0:RY(θ[0]) ├─░───■────────░─┤ RY(θ[3]) ├─░───■────────░─┤ RY(θ[6])
     ├──────────┤ ░ ┌─┴─┐      ░ ├──────────┤ ░ ┌─┴─┐      ░ ├──────────┤
q_1:RY(θ[1]) ├─░─┤ X ├──■───░─┤ RY(θ[4]) ├─░─┤ X ├──■───░─┤ RY(θ[7])
     ├──────────┤ ░ └───┘┌─┴─┐ ░ ├──────────┤ ░ └───┘┌─┴─┐ ░ ├──────────┤
q_2:RY(θ[2]) ├─░──────┤ X ├─░─┤ RY(θ[5]) ├─░──────┤ X ├─░─┤ RY(θ[8])
     └──────────┘ ░      └───┘ ░ └──────────┘ ░      └───┘ ░ └──────────┘
>>> ansatz = RealAmplitudes(4, reps=1, entanglement='circular', insert_barriers=True)
>>> print(ansatz)
     ┌──────────┐ ░ ┌───┐                ░ ┌──────────┐
q_0:RY(θ[0]) ├─░─┤ X ├──■─────────────░─┤ RY(θ[4])
     ├──────────┤ ░ └─┬─┘┌─┴─┐           ░ ├──────────┤
q_1:RY(θ[1]) ├─░───┼──┤ X ├──■────────░─┤ RY(θ[5])
     ├──────────┤ ░   │  └───┘┌─┴─┐      ░ ├──────────┤
q_2:RY(θ[2]) ├─░───┼───────┤ X ├──■───░─┤ RY(θ[6])
     ├──────────┤ ░   │       └───┘┌─┴─┐ ░ ├──────────┤
q_3:RY(θ[3]) ├─░───■────────────┤ X ├─░─┤ RY(θ[7])
     └──────────┘ ░                └───┘ ░ └──────────┘
>>> ansatz = RealAmplitudes(4, reps=2, entanglement=[[0,3], [0,2]],
... skip_unentangled_qubits=True)
>>> print(ansatz)
     ┌──────────┐                 ┌──────────┐                 ┌──────────┐
q_0:RY(θ[0]) ├──■───────■──────┤ RY(θ[3]) ├──■───────■──────┤ RY(θ[6])
     └──────────┘  │       │      └──────────┘  │       │      └──────────┘
q_1: ──────────────┼───────┼────────────────────┼───────┼──────────────────
     ┌──────────┐  │     ┌─┴─┐    ┌──────────┐  │     ┌─┴─┐    ┌──────────┐
q_2:RY(θ[1]) ├──┼─────┤ X ├────┤ RY(θ[4]) ├──┼─────┤ X ├────┤ RY(θ[7])
     ├──────────┤┌─┴─┐┌──┴───┴───┐└──────────┘┌─┴─┐┌──┴───┴───┐└──────────┘
q_3:RY(θ[2]) ├┤ X ├┤ RY(θ[5]) ├────────────┤ X ├┤ RY(θ[8]) ├────────────
     └──────────┘└───┘└──────────┘            └───┘└──────────┘

Create a new RealAmplitudes 2-local circuit.

Parameters

  • num_qubits (Optional[int]) – The number of qubits of the RealAmplitudes circuit.
  • reps (int) – Specifies how often the structure of a rotation layer followed by an entanglement layer is repeated.
  • entanglement (Union[str, List[List[int]], Callable[[int], List[int]]]) – Specifies the entanglement structure. Can be a string (‘full’, ‘linear’ or ‘sca’), a list of integer-pairs specifying the indices of qubits entangled with one another, or a callable returning such a list provided with the index of the entanglement layer. See the Examples section of TwoLocal for more detail.
  • initial_state (Optional[Any]) – A QuantumCircuit object to prepend to the circuit.
  • skip_unentangled_qubits (bool) – If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the Ansatz. Defaults to False.
  • skip_unentangled_qubits – If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the Ansatz. Defaults to False.
  • skip_final_rotation_layer (bool) – If False, a rotation layer is added at the end of the ansatz. If True, no rotation layer is added.
  • parameter_prefix (str) – The parameterized gates require a parameter to be defined, for which we use ParameterVector.
  • insert_barriers (bool) – If True, barriers are inserted in between each layer. If False, no barriers are inserted.

Attributes

ancillas

Returns a list of ancilla bits in the order that the registers were added.

Return type

List[AncillaQubit]

calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form

{‘gate_name’: {(qubits, params): schedule}}

Return type

dict

clbits

Returns a list of classical bits in the order that the registers were added.

Return type

List[Clbit]

data

entanglement

Get the entanglement strategy.

Return type

Union[str, List[str], List[List[str]], List[int], List[List[int]], List[List[List[int]]], List[List[List[List[int]]]], Callable[[int], str], Callable[[int], List[List[int]]]]

Returns

The entanglement strategy, see get_entangler_map() for more detail on how the format is interpreted.

entanglement_blocks

The blocks in the entanglement layers.

Return type

List[Instruction]

Returns

The blocks in the entanglement layers.

extension_lib

Default value: 'include "qelib1.inc";'

global_phase

Return the global phase of the circuit in radians.

Return type

Union[ParameterExpression, float]

Default value: 'OPENQASM 2.0;'

initial_state

Return the initial state that is added in front of the n-local circuit.

Return type

Any

Returns

The initial state.

insert_barriers

If barriers are inserted in between the layers or not.

Return type

bool

Returns

True, if barriers are inserted in between the layers, False if not.

instances

Default value: 9

metadata

The user provided metadata associated with the circuit

The metadata for the circuit is a user provided dict of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

Return type

dict

num_ancillas

Return the number of ancilla qubits.

Return type

int

num_clbits

Return number of classical bits.

Return type

int

num_layers

Return the number of layers in the n-local circuit.

Return type

int

Returns

The number of layers in the circuit.

num_parameters

Return type

int

num_parameters_settable

The number of total parameters that can be set to distinct values.

This does not change when the parameters are bound or exchanged for same parameters, and therefore is different from num_parameters which counts the number of unique Parameter objects currently in the circuit.

Return type

int

Returns

The number of parameters originally available in the circuit.

Note

This quantity does not require the circuit to be built yet.

num_qubits

Returns the number of qubits in this circuit.

Return type

int

Returns

The number of qubits.

ordered_parameters

The parameters used in the underlying circuit.

This includes float values and duplicates.

Examples

>>> # prepare circuit ...
>>> print(nlocal)
     ┌───────┐┌──────────┐┌──────────┐┌──────────┐
q_0:Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3])
     └───────┘└──────────┘└──────────┘└──────────┘
>>> nlocal.parameters
{Parameter(θ[1]), Parameter(θ[3])}
>>> nlocal.ordered_parameters
[1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]

Return type

List[Parameter]

Returns

The parameters objects used in the circuit.

parameter_bounds

Return the parameter bounds.

Return type

List[Tuple[float, float]]

Returns

The parameter bounds.

parameters

Return type

ParameterView

preferred_init_points

The initial points for the parameters. Can be stored as initial guess in optimization.

Return type

Optional[List[float]]

Returns

The initial values for the parameters, or None, if none have been set.

prefix

Default value: 'circuit'

qregs

A list of the quantum registers associated with the circuit.

qubits

Returns a list of quantum bits in the order that the registers were added.

Return type

List[Qubit]

reps

The number of times rotation and entanglement block are repeated.

Return type

int

Returns

The number of repetitions.

rotation_blocks

The blocks in the rotation layers.

Return type

List[Instruction]

Returns

The blocks in the rotation layers.

Was this page helpful?
Report a bug or request content on GitHub.