RealAmplitudes
class qiskit.circuit.library.RealAmplitudes(num_qubits=None, entanglement='reverse_linear', reps=3, skip_unentangled_qubits=False, skip_final_rotation_layer=False, parameter_prefix='θ', insert_barriers=False, initial_state=None, name='RealAmplitudes', flatten=None)
Bases: TwoLocal
The real-amplitudes 2-local circuit.
The RealAmplitudes
circuit is a heuristic trial wave function used as Ansatz in chemistry applications or classification circuits in machine learning. The circuit consists of alternating layers of rotations and entanglements. The entanglement pattern can be user-defined or selected from a predefined set. It is called RealAmplitudes
since the prepared quantum states will only have real amplitudes, the complex part is always 0.
For example a RealAmplitudes
circuit with 2 repetitions on 3 qubits with 'reverse_linear'
entanglement is
┌──────────┐ ░ ░ ┌──────────┐ ░ ░ ┌──────────┐
┤ Ry(θ[0]) ├─░────────■───░─┤ Ry(θ[3]) ├─░────────■───░─┤ Ry(θ[6]) ├
├──────────┤ ░ ┌─┴─┐ ░ ├──────────┤ ░ ┌─┴─┐ ░ ├──────────┤
┤ Ry(θ[1]) ├─░───■──┤ X ├─░─┤ Ry(θ[4]) ├─░───■──┤ X ├─░─┤ Ry(θ[7]) ├
├──────────┤ ░ ┌─┴─┐└───┘ ░ ├──────────┤ ░ ┌─┴─┐└───┘ ░ ├──────────┤
┤ Ry(θ[2]) ├─░─┤ X ├──────░─┤ Ry(θ[5]) ├─░─┤ X ├──────░─┤ Ry(θ[8]) ├
└──────────┘ ░ └───┘ ░ └──────────┘ ░ └───┘ ░ └──────────┘
The entanglement can be set using the entanglement
keyword as string or a list of index-pairs. See the documentation of TwoLocal
and NLocal
for more detail. Additional options that can be set include the number of repetitions, skipping rotation gates on qubits that are not entangled, leaving out the final rotation layer and inserting barriers in between the rotation and entanglement layers.
If some qubits are not entangled with other qubits it makes sense to not apply rotation gates on these qubits, since a sequence of rotations can be reduced to a single rotation with summed rotation angles.
Examples
>>> ansatz = RealAmplitudes(3, reps=2) # create the circuit on 3 qubits
>>> print(ansatz)
┌──────────┐ ┌──────────┐ ┌──────────┐
q_0: ┤ Ry(θ[0]) ├──────────■──────┤ Ry(θ[3]) ├──────────■──────┤ Ry(θ[6]) ├
├──────────┤ ┌─┴─┐ ├──────────┤ ┌─┴─┐ ├──────────┤
q_1: ┤ Ry(θ[1]) ├──■─────┤ X ├────┤ Ry(θ[4]) ├──■─────┤ X ├────┤ Ry(θ[7]) ├
├──────────┤┌─┴─┐┌──┴───┴───┐└──────────┘┌─┴─┐┌──┴───┴───┐└──────────┘
q_2: ┤ Ry(θ[2]) ├┤ X ├┤ Ry(θ[5]) ├────────────┤ X ├┤ Ry(θ[8]) ├────────────
└──────────┘└───┘└──────────┘ └───┘└──────────┘
>>> ansatz = RealAmplitudes(3, entanglement='full', reps=2) # it is the same unitary as above
>>> print(ansatz)
┌──────────┐ ┌──────────┐ ┌──────────┐
q_0: ┤ RY(θ[0]) ├──■────■──┤ RY(θ[3]) ├──────────────■────■──┤ RY(θ[6]) ├────────────
├──────────┤┌─┴─┐ │ └──────────┘┌──────────┐┌─┴─┐ │ └──────────┘┌──────────┐
q_1: ┤ RY(θ[1]) ├┤ X ├──┼───────■──────┤ RY(θ[4]) ├┤ X ├──┼───────■──────┤ RY(θ[7]) ├
├──────────┤└───┘┌─┴─┐ ┌─┴─┐ ├──────────┤└───┘┌─┴─┐ ┌─┴─┐ ├──────────┤
q_2: ┤ RY(θ[2]) ├─────┤ X ├───┤ X ├────┤ RY(θ[5]) ├─────┤ X ├───┤ X ├────┤ RY(θ[8]) ├
└──────────┘ └───┘ └───┘ └──────────┘ └───┘ └───┘ └──────────┘
>>> ansatz = RealAmplitudes(3, entanglement='linear', reps=2, insert_barriers=True)
>>> qc = QuantumCircuit(3) # create a circuit and append the RY variational form
>>> qc.compose(ansatz, inplace=True)
>>> qc.draw()
┌──────────┐ ░ ░ ┌──────────┐ ░ ░ ┌──────────┐
q_0: ┤ RY(θ[0]) ├─░───■────────░─┤ RY(θ[3]) ├─░───■────────░─┤ RY(θ[6]) ├
├──────────┤ ░ ┌─┴─┐ ░ ├──────────┤ ░ ┌─┴─┐ ░ ├──────────┤
q_1: ┤ RY(θ[1]) ├─░─┤ X ├──■───░─┤ RY(θ[4]) ├─░─┤ X ├──■───░─┤ RY(θ[7]) ├
├──────────┤ ░ └───┘┌─┴─┐ ░ ├──────────┤ ░ └───┘┌─┴─┐ ░ ├──────────┤
q_2: ┤ RY(θ[2]) ├─░──────┤ X ├─░─┤ RY(θ[5]) ├─░──────┤ X ├─░─┤ RY(θ[8]) ├
└──────────┘ ░ └───┘ ░ └──────────┘ ░ └───┘ ░ └──────────┘
>>> ansatz = RealAmplitudes(4, reps=1, entanglement='circular', insert_barriers=True)
>>> print(ansatz)
┌──────────┐ ░ ┌───┐ ░ ┌──────────┐
q_0: ┤ RY(θ[0]) ├─░─┤ X ├──■─────────────░─┤ RY(θ[4]) ├
├──────────┤ ░ └─┬─┘┌─┴─┐ ░ ├──────────┤
q_1: ┤ RY(θ[1]) ├─░───┼──┤ X ├──■────────░─┤ RY(θ[5]) ├
├──────────┤ ░ │ └───┘┌─┴─┐ ░ ├──────────┤
q_2: ┤ RY(θ[2]) ├─░───┼───────┤ X ├──■───░─┤ RY(θ[6]) ├
├──────────┤ ░ │ └───┘┌─┴─┐ ░ ├──────────┤
q_3: ┤ RY(θ[3]) ├─░───■────────────┤ X ├─░─┤ RY(θ[7]) ├
└──────────┘ ░ └───┘ ░ └──────────┘
>>> ansatz = RealAmplitudes(4, reps=2, entanglement=[[0,3], [0,2]],
... skip_unentangled_qubits=True)
>>> print(ansatz)
┌──────────┐ ┌──────────┐ ┌──────────┐
q_0: ┤ RY(θ[0]) ├──■───────■──────┤ RY(θ[3]) ├──■───────■──────┤ RY(θ[6]) ├
└──────────┘ │ │ └──────────┘ │ │ └──────────┘
q_1: ──────────────┼───────┼────────────────────┼───────┼──────────────────
┌──────────┐ │ ┌─┴─┐ ┌──────────┐ │ ┌─┴─┐ ┌──────────┐
q_2: ┤ RY(θ[1]) ├──┼─────┤ X ├────┤ RY(θ[4]) ├──┼─────┤ X ├────┤ RY(θ[7]) ├
├──────────┤┌─┴─┐┌──┴───┴───┐└──────────┘┌─┴─┐┌──┴───┴───┐└──────────┘
q_3: ┤ RY(θ[2]) ├┤ X ├┤ RY(θ[5]) ├────────────┤ X ├┤ RY(θ[8]) ├────────────
└──────────┘└───┘└──────────┘ └───┘└──────────┘
Parameters
- num_qubits (int | None) – The number of qubits of the RealAmplitudes circuit.
- reps (int) – Specifies how often the structure of a rotation layer followed by an entanglement layer is repeated.
- entanglement (str |list[list[int]] | Callable[[int], list[int]]) – Specifies the entanglement structure. Can be a string (‘full’, ‘linear’ ‘reverse_linear, ‘circular’ or ‘sca’), a list of integer-pairs specifying the indices of qubits entangled with one another, or a callable returning such a list provided with the index of the entanglement layer. Default to ‘reverse_linear’ entanglement. Note that ‘reverse_linear’ entanglement provides the same unitary as ‘full’ with fewer entangling gates. See the Examples section of
TwoLocal
for more detail. - initial_state (QuantumCircuit | None) – A QuantumCircuit object to prepend to the circuit.
- skip_unentangled_qubits (bool) – If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the Ansatz. Defaults to False.
- skip_final_rotation_layer (bool) – If False, a rotation layer is added at the end of the ansatz. If True, no rotation layer is added.
- parameter_prefix (str) – The parameterized gates require a parameter to be defined, for which we use
ParameterVector
. - insert_barriers (bool) – If True, barriers are inserted in between each layer. If False, no barriers are inserted.
- flatten (bool | None) – Set this to
True
to output a flat circuit instead of nesting it inside multiple layers of gate objects. By default currently the contents of the output circuit will be wrapped in nested objects for cleaner visualization. However, if you’re using this circuit for anything besides visualization its strongly recommended to set this flag toTrue
to avoid a large performance overhead for parameter binding.
Attributes
ancillas
A list of AncillaQubit
s in the order that they were added. You should not mutate this.
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}
clbits
A list of Clbit
s in the order that they were added. You should not mutate this.
data
The circuit data (instructions and context).
Returns
a list-like object containing the CircuitInstruction
s for each instruction.
Return type
QuantumCircuitData
entanglement
Get the entanglement strategy.
Returns
The entanglement strategy, see get_entangler_map()
for more detail on how the format is interpreted.
entanglement_blocks
The blocks in the entanglement layers.
Returns
The blocks in the entanglement layers.
flatten
Returns whether the circuit is wrapped in nested gates/instructions or flattened.
global_phase
The global phase of the current circuit scope in radians.
initial_state
Return the initial state that is added in front of the n-local circuit.
Returns
The initial state.
insert_barriers
If barriers are inserted in between the layers or not.
Returns
True
, if barriers are inserted in between the layers, False
if not.
instances
Default value: 186
layout
Return any associated layout information about the circuit
This attribute contains an optional TranspileLayout
object. This is typically set on the output from transpile()
or PassManager.run()
to retain information about the permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the transpile()
function, an initial layout which permutes the qubits based on the selected physical qubits on the Target
, and a final layout which is an output permutation caused by SwapGate
s inserted during routing.
metadata
Arbitrary user-defined metadata for the circuit.
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
num_ancillas
Return the number of ancilla qubits.
num_captured_vars
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
This is the length of the iter_captured_vars()
iterable. If this is non-zero, num_input_vars
must be zero.
num_clbits
Return number of classical bits.
num_declared_vars
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
This is the length of the iter_declared_vars()
iterable.
num_input_vars
The number of real-time classical variables in the circuit marked as circuit inputs.
This is the length of the iter_input_vars()
iterable. If this is non-zero, num_captured_vars
must be zero.
num_layers
Return the number of layers in the n-local circuit.
Returns
The number of layers in the circuit.
num_parameters
The number of parameter objects in the circuit.
num_parameters_settable
The number of total parameters that can be set to distinct values.
This does not change when the parameters are bound or exchanged for same parameters, and therefore is different from num_parameters
which counts the number of unique Parameter
objects currently in the circuit.
Returns
The number of parameters originally available in the circuit.
This quantity does not require the circuit to be built yet.
num_qubits
Returns the number of qubits in this circuit.
Returns
The number of qubits.
num_vars
The number of real-time classical variables in the circuit.
This is the length of the iter_vars()
iterable.
op_start_times
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
Returns
List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data
.
Raises
AttributeError – When circuit is not scheduled.
ordered_parameters
The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ...
>>> print(nlocal)
┌───────┐┌──────────┐┌──────────┐┌──────────┐
q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├
└───────┘└──────────┘└──────────┘└──────────┘
>>> nlocal.parameters
{Parameter(θ[1]), Parameter(θ[3])}
>>> nlocal.ordered_parameters
[1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
Returns
The parameters objects used in the circuit.
parameter_bounds
Return the parameter bounds.
Returns
The parameter bounds.
parameters
The parameters defined in the circuit.
This attribute returns the Parameter
objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector
are still sorted numerically.
Examples
The snippet below shows that insertion order of parameters does not matter.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a ParameterVector
can be used.
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
Returns
The sorted Parameter
objects in the circuit.
preferred_init_points
The initial points for the parameters. Can be stored as initial guess in optimization.
Returns
The initial values for the parameters, or None, if none have been set.
prefix
Default value: 'circuit'
qregs
Type: list[QuantumRegister]
A list of the QuantumRegister
s in this circuit. You should not mutate this.
qubits
A list of Qubit
s in the order that they were added. You should not mutate this.
reps
The number of times rotation and entanglement block are repeated.
Returns
The number of repetitions.
rotation_blocks
The blocks in the rotation layers.
Returns
The blocks in the rotation layers.
name
Type: str
A human-readable name for the circuit.
cregs
Type: list[ClassicalRegister]
A list of the ClassicalRegister
s in this circuit. You should not mutate this.
duration
Type: int | float | None
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by unit
.
unit
The unit that duration
is specified in.