UnitarySimulator
class UnitarySimulator(configuration=None, provider=None)
Ideal quantum circuit unitary simulator.
Backend options
The following backend options may be used with in the backend_options
kwarg for UnitarySimulator.run()
or qiskit.execute
.
"initial_unitary"
(matrix_like): Sets a custom initial unitary matrix for the simulation instead of identity (Default: None)."validation_threshold"
(double): Sets the threshold for checking if initial unitary and target unitary are unitary matrices. (Default: 1e-8)."zero_threshold"
(double): Sets the threshold for truncating small values to zero in the result data (Default: 1e-10)."max_parallel_threads"
(int): Sets the maximum number of CPU cores used by OpenMP for parallelization. If set to 0 the maximum will be set to the number of CPU cores (Default: 0)."max_parallel_experiments"
(int): Sets the maximum number of qobj experiments that may be executed in parallel up to the max_parallel_threads value. If set to 1 parallel circuit execution will be disabled. If set to 0 the maximum will be automatically set to max_parallel_threads (Default: 1)."max_memory_mb"
(int): Sets the maximum size of memory to store a state vector. If a state vector needs more, an error is thrown. In general, a state vector of n-qubits uses 2^n complex values (16 Bytes). If set to 0, the maximum will be automatically set to half the system memory size (Default: 0)."statevector_parallel_threshold"
(int): Sets the threshold that 2 * “n_qubits” must be greater than to enable OpenMP parallelization for matrix multiplication during execution of an experiment. If parallel circuit or shot execution is enabled this will only use unallocated CPU cores up to max_parallel_threads. Note that setting this too low can reduce performance (Default: 14).
Aer class for backends.
This method should initialize the module and its configuration, and raise an exception if a component of the module is not available.
Parameters
- controller (function) – Aer controller to be executed
- configuration (BackendConfiguration) – backend configuration
- provider (BaseProvider) – provider responsible for this backend
Raises
- FileNotFoundError if backend executable is not available. –
- AerError – if there is no name in the configuration
Attributes
DEFAULT_CONFIGURATION
Default value: {'backend_name': 'unitary_simulator', 'backend_version': '0.5.2', 'basis_gates': ['u1', 'u2', 'u3', 'cx', 'cz', 'id', 'x', 'y', 'z', 'h', 's', 'sdg', 't', 'tdg', 'swap', 'ccx', 'unitary', 'diagonal', 'cu1', 'cu2', 'cu3', 'cswap', 'mcx', 'mcy', 'mcz', 'mcu1', 'mcu2', 'mcu3', 'mcswap', 'multiplexer'], 'conditional': False, 'coupling_map': None, 'description': 'A C++ unitary simulator for QASM Qobj files', 'gates': [{'name': 'u1', 'parameters': ['lam'], 'conditional': True, 'description': 'Single-qubit gate [[1, 0], [0, exp(1j*lam)]]', 'qasm_def': 'gate u1(lam) q { U(0,0,lam) q; }'}, {'name': 'u2', 'parameters': ['phi', 'lam'], 'conditional': True, 'description': 'Single-qubit gate [[1, -exp(1j*lam)], [exp(1j*phi), exp(1j*(phi+lam))]]/sqrt(2)', 'qasm_def': 'gate u2(phi,lam) q { U(pi/2,phi,lam) q; }'}, {'name': 'u3', 'parameters': ['theta', 'phi', 'lam'], 'conditional': True, 'description': 'Single-qubit gate with three rotation angles', 'qasm_def': 'gate u3(theta,phi,lam) q { U(theta,phi,lam) q; }'}, {'name': 'cx', 'parameters': [], 'conditional': True, 'description': 'Two-qubit Controlled-NOT gate', 'qasm_def': 'gate cx c,t { CX c,t; }'}, {'name': 'cz', 'parameters': [], 'conditional': True, 'description': 'Two-qubit Controlled-Z gate', 'qasm_def': 'gate cz a,b { h b; cx a,b; h b; }'}, {'name': 'id', 'parameters': [], 'conditional': True, 'description': 'Single-qubit identity gate', 'qasm_def': 'gate id a { U(0,0,0) a; }'}, {'name': 'x', 'parameters': [], 'conditional': True, 'description': 'Single-qubit Pauli-X gate', 'qasm_def': 'gate x a { U(pi,0,pi) a; }'}, {'name': 'y', 'parameters': [], 'conditional': True, 'description': 'Single-qubit Pauli-Y gate', 'qasm_def': 'TODO'}, {'name': 'z', 'parameters': [], 'conditional': True, 'description': 'Single-qubit Pauli-Z gate', 'qasm_def': 'TODO'}, {'name': 'h', 'parameters': [], 'conditional': True, 'description': 'Single-qubit Hadamard gate', 'qasm_def': 'TODO'}, {'name': 's', 'parameters': [], 'conditional': True, 'description': 'Single-qubit phase gate', 'qasm_def': 'TODO'}, {'name': 'sdg', 'parameters': [], 'conditional': True, 'description': 'Single-qubit adjoint phase gate', 'qasm_def': 'TODO'}, {'name': 't', 'parameters': [], 'conditional': True, 'description': 'Single-qubit T gate', 'qasm_def': 'TODO'}, {'name': 'tdg', 'parameters': [], 'conditional': True, 'description': 'Single-qubit adjoint T gate', 'qasm_def': 'TODO'}, {'name': 'swap', 'parameters': [], 'conditional': True, 'description': 'Two-qubit SWAP gate', 'qasm_def': 'TODO'}, {'name': 'ccx', 'parameters': [], 'conditional': True, 'description': 'Three-qubit Toffoli gate', 'qasm_def': 'TODO'}, {'name': 'cswap', 'parameters': [], 'conditional': True, 'description': 'Three-qubit Fredkin (controlled-SWAP) gate', 'qasm_def': 'TODO'}, {'name': 'unitary', 'parameters': ['matrix'], 'conditional': True, 'description': 'N-qubit arbitrary unitary gate. The parameter is the N-qubit matrix to apply.', 'qasm_def': 'unitary(matrix) q1, q2,...'}, {'name': 'diagonal', 'parameters': ['diag_elements'], 'conditional': True, 'description': 'N-qubit diagonal unitary gate. The parameters are the diagonal entries of the N-qubit matrix to apply.', 'qasm_def': 'TODO'}, {'name': 'cu1', 'parameters': ['lam'], 'conditional': True, 'description': 'Two-qubit Controlled-u1 gate', 'qasm_def': 'TODO'}, {'name': 'cu2', 'parameters': ['phi', 'lam'], 'conditional': True, 'description': 'Two-qubit Controlled-u2 gate', 'qasm_def': 'TODO'}, {'name': 'cu3', 'parameters': ['theta', 'phi', 'lam'], 'conditional': True, 'description': 'Two-qubit Controlled-u3 gate', 'qasm_def': 'TODO'}, {'name': 'mcx', 'parameters': [], 'conditional': True, 'description': 'N-qubit multi-controlled-X gate', 'qasm_def': 'TODO'}, {'name': 'mcy', 'parameters': [], 'conditional': True, 'description': 'N-qubit multi-controlled-Y gate', 'qasm_def': 'TODO'}, {'name': 'mcz', 'parameters': [], 'conditional': True, 'description': 'N-qubit multi-controlled-Z gate', 'qasm_def': 'TODO'}, {'name': 'mcu1', 'parameters': ['lam'], 'conditional': True, 'description': 'N-qubit multi-controlled-u1 gate', 'qasm_def': 'TODO'}, {'name': 'mcu2', 'parameters': ['phi', 'lam'], 'conditional': True, 'description': 'N-qubit multi-controlled-u2 gate', 'qasm_def': 'TODO'}, {'name': 'mcu3', 'parameters': ['theta', 'phi', 'lam'], 'conditional': True, 'description': 'N-qubit multi-controlled-u3 gate', 'qasm_def': 'TODO'}, {'name': 'mcswap', 'parameters': [], 'conditional': True, 'description': 'N-qubit multi-controlled-SWAP gate', 'qasm_def': 'TODO'}, {'name': 'multiplexer', 'parameters': ['mat1', 'mat2', '...'], 'conditional': True, 'description': 'N-qubit multi-plexer gate. The input parameters are the gates for each value.', 'qasm_def': 'TODO'}], 'local': True, 'max_shots': 1000000, 'memory': False, 'n_qubits': 16, 'open_pulse': False, 'simulator': True, 'url': 'https://github.com/Qiskit/qiskit-aer'}
MAX_QUBIT_MEMORY
Default value: 16
Methods
configuration
UnitarySimulator.configuration()
Return the backend configuration.
Returns
the configuration for the backend.
Return type
name
UnitarySimulator.name()
Return the backend name.
Returns
the name of the backend.
Return type
str
properties
UnitarySimulator.properties()
Return the backend properties.
Returns
the configuration for the backend. If the backend does not support properties, it returns None
.
Return type
provider
UnitarySimulator.provider()
Return the backend Provider.
Returns
the Provider responsible for the backend.
Return type
run
UnitarySimulator.run(qobj, backend_options=None, noise_model=None, validate=False)
Run a qobj on the backend.
Parameters
- qobj (QasmQobj) – The Qobj to be executed.
- backend_options (dict or None) – dictionary of backend options for the execution (default: None).
- noise_model (NoiseModel or None) – noise model to use for simulation (default: None).
- validate (bool) – validate the Qobj before running (default: True).
Returns
The simulation job.
Return type
Additional Information:
- The entries in the
backend_options
will be combined with theQobj.config
dictionary with the values of entries inbackend_options
taking precedence. - If present the
noise_model
will override any noise model specified in thebackend_options
orQobj.config
.
status
UnitarySimulator.status()
Return backend status.
Returns
the status of the backend.
Return type
version
UnitarySimulator.version()
Return the backend version.
Returns
the X.X.X version of the backend.
Return type
str