Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

HamiltonianGate

class HamiltonianGate(data, time, label=None)

GitHub

Class for representing evolution by a Hermitian Hamiltonian operator as a gate. This gate resolves to a UnitaryGate U(t) = exp(-1j * t * H), which can be decomposed into basis gates if it is 2 qubits or less, or simulated directly in Aer for more qubits.

Create a gate from a hamiltonian operator and evolution time parameter t

Parameters

  • data (matrix or Operator) – a hermitian operator.
  • time (float) – time evolution parameter.
  • label (str) – unitary name for backend [Default: None].

Raises

ExtensionError – if input data is not an N-qubit unitary operator.


Attributes

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

label

Type: str

Return gate label

Return type

str

params

return instruction params.


Methods

add_decomposition

HamiltonianGate.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

adjoint

HamiltonianGate.adjoint()

Return the adjoint of the unitary.

assemble

HamiltonianGate.assemble()

Assemble a QasmQobjInstruction

Return type

Instruction

broadcast_arguments

HamiltonianGate.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]

Parameters

  • qargs (List) – List of quantum bit arguments.
  • cargs (List) – List of classical bit arguments.

Return type

Tuple[List, List]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if

HamiltonianGate.c_if(classical, val)

Add classical condition on register classical and value val.

conjugate

HamiltonianGate.conjugate()

Return the conjugate of the Hamiltonian.

control

HamiltonianGate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return controlled version of gate. See ControlledGate for usage.

Parameters

  • num_ctrl_qubits (Optional[int]) – number of controls to add to gate (default=1)
  • label (Optional[str]) – optional gate label
  • ctrl_state (Union[int, str, None]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.

Returns

Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.

Return type

qiskit.circuit.ControlledGate

Raises

QiskitError – unrecognized mode or invalid ctrl_state

copy

HamiltonianGate.copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name

updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

HamiltonianGate.inverse()

Return the adjoint of the unitary.

is_parameterized

HamiltonianGate.is_parameterized()

Return True .IFF. instruction is parameterized else False

mirror

HamiltonianGate.mirror()

For a composite instruction, reverse the order of sub-gates.

This is done by recursively mirroring all sub-instructions. It does not invert any gate.

Returns

a fresh gate with sub-gates reversed

Return type

qiskit.circuit.Instruction

power

HamiltonianGate.power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

qiskit.extensions.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm

HamiltonianGate.qasm()

Raise an error, as QASM is not defined for the HamiltonianGate.

repeat

HamiltonianGate.repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

to_matrix

HamiltonianGate.to_matrix()

Return matrix for the unitary.

transpose

HamiltonianGate.transpose()

Return the transpose of the Hamiltonian.

Was this page helpful?
Report a bug or request content on GitHub.