Skip to main contentIBM Quantum Documentation

Port code to Qiskit Serverless

The following example demonstrates how to port existing code to leverage Qiskit Serverless.


Update the experiment

from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit.circuit.random import random_circuit
 
qc_random = [(random_circuit(20, 20, measure=True)) for _ in range(30)]
optimization_level = 3
 
# Get backend
service = QiskitRuntimeService(channel="ibm_quantum", token=API_TOKEN)
backend = service.get_backend(backend_name)
 
pass_manager = generate_preset_pass_manager(
    optimization_level=optimization_level, backend=backend
)
 
# @distribute_task(target={"cpu": 1})
def transpile_parallel(circuit, pass_manager):
    """Distributed transpilation for an abstract circuit into an ISA circuit for a given backend."""
    
    isa_circuit = pass_manager.run(circuit)
 
    return isa_circuit
 
transpiled_circuits = [
    transpile_parallel(circuit, pass_manager)
    for circuit in circuits
]
 
print(transpiled_circuits)

Upload to Qiskit Serverless

from qiskit_ibm_catalog import QiskitServerless, QiskitFunction
 
# Authenticate to the remote cluster and submit the pattern for remote execution
serverless = QiskitServerless(
    token=API_TOKEN
)
 
transpile_remote_demo = QiskitFunction(
    title="transpile_remote_serverless",
    entrypoint="transpile_remote.py",
    working_dir="./source_files/",
)
 
serverless.upload(transpile_remote_demo)

Output

'transpile_remote_serverless'

Remotely run in Qiskit Serverless

from qiskit.circuit.random import random_circuit
from qiskit_ibm_runtime import QiskitRuntimeService
 
# Setup inputs
qc_random = [(random_circuit(20, 20, measure=True)) for _ in range(30)]
backend = "ibm_brisbane"
optimization_level = 3
 
# Running program
transpile_remote_serverless = serverless.get('transpile_remote_serverless')
job = transpile_remote_serverless.run(
    circuits=qc_random,
    backend=backend,
    optimization_level=optimization_level
)
 
job.job_id()

Output

'727e921d-512d-4b7d-af97-fe29e93ce7ea'

Next steps

Recommendations
Was this page helpful?
Report a bug or request content on GitHub.