SuzukiTrotter

class qiskit.synthesis.SuzukiTrotter(order=2, reps=1, insert_barriers=False, cx_structure='chain', atomic_evolution=None)

GitHub(opens in a new tab)

Bases: ProductFormula

The (higher order) Suzuki-Trotter product formula.

The Suzuki-Trotter formulas improve the error of the Lie-Trotter approximation. For example, the second order decomposition is

$e^{A + B} \approx e^{B/2} e^{A} e^{B/2}.$

Higher order decompositions are based on recursions, see Ref. [1] for more details.

In this implementation, the operators are provided as sum terms of a Pauli operator. For example, in the second order Suzuki-Trotter decomposition we approximate

$e^{-it(XX + ZZ)} = e^{-it/2 ZZ}e^{-it XX}e^{-it/2 ZZ} + \mathcal{O}(t^3).$

References

[1]: D. Berry, G. Ahokas, R. Cleve and B. Sanders, “Efficient quantum algorithms for simulating sparse Hamiltonians” (2006). arXiv:quant-ph/0508139(opens in a new tab) [2]: N. Hatano and M. Suzuki, “Finding Exponential Product Formulas of Higher Orders” (2005). arXiv:math-ph/0506007(opens in a new tab)

Parameters

Raises

ValueError(opens in a new tab) – If order is not even

Attributes

settings

Return the settings in a dictionary, which can be used to reconstruct the object.

Returns

A dictionary containing the settings of this product formula.

Raises

NotImplementedError(opens in a new tab) – If a custom atomic evolution is set, which cannot be serialized.

Methods

synthesize

synthesize(evolution)

GitHub(opens in a new tab)

Synthesize an qiskit.circuit.library.PauliEvolutionGate.

Parameters

evolution (PauliEvolutionGate) – The evolution gate to synthesize.

Returns

A circuit implementing the evolution.

Return type

QuantumCircuit