# DensityMatrix

qiskit.quantum_info.DensityMatrix(data, dims=None) GitHub(opens in a new tab)

Bases: QuantumState, TolerancesMixin

DensityMatrix class

Initialize a density matrix object.

Parameters

• or (data (np.ndarray or list(opens in a new tab) or matrix_like orQuantumCircuit) – qiskit.circuit.Instruction): A statevector, quantum instruction or an object with a to_operator or to_matrix method from which the density matrix can be constructed. If a vector the density matrix is constructed as the projector of that vector. If a quantum instruction, the density matrix is constructed by assuming all qubits are initialized in the zero state.
• dims (int(opens in a new tab) ortuple(opens in a new tab) orlist(opens in a new tab)) – Optional. The subsystem dimension of the state (See additional information).

Raises

QiskitError – if input data is not valid.

The dims kwarg can be None, an integer, or an iterable of integers.

• Iterable – the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.
• Int or None – the leading dimension of the input matrix specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.

## Attributes

### atol

= 1e-08

Return data.

### num_qubits

Return the number of qubits if a N-qubit state or None otherwise.

### rtol

= 1e-05

Return settings.

## Methods

### conjugate

conjugate()

Return the conjugate of the density matrix.

### copy

copy()

Make a copy of current operator.

### dims

dims(qargs=None)

Return tuple of input dimension for specified subsystems.

### draw

draw(output=None, **drawer_args)

Return a visualization of the Statevector.

repr: ASCII TextMatrix of the state’s __repr__.

text: ASCII TextMatrix that can be printed in the console.

latex: An IPython Latex object for displaying in Jupyter Notebooks.

latex_source: Raw, uncompiled ASCII source to generate array using LaTeX.

qsphere: Matplotlib figure, rendering of density matrix using plot_state_qsphere().

hinton: Matplotlib figure, rendering of density matrix using plot_state_hinton().

bloch: Matplotlib figure, rendering of density matrix using plot_bloch_multivector().

Parameters

• output (str(opens in a new tab)) – Select the output method to use for drawing the state. Valid choices are repr, text, latex, latex_source, qsphere, hinton, or bloch. Default is repr. Default can be changed by adding the line state_drawer = <default> to ~/.qiskit/settings.conf under [default].
• drawer_args – Arguments to be passed directly to the relevant drawing function or constructor (TextMatrix(), array_to_latex(), plot_state_qsphere(), plot_state_hinton() or plot_bloch_multivector()). See the relevant function under qiskit.visualization for that function’s documentation.

Returns

matplotlib.Figure or str(opens in a new tab) or TextMatrix or IPython.display.Latex: Drawing of the Statevector.

Raises

ValueError(opens in a new tab) – when an invalid output method is selected.

### evolve

evolve(other, qargs=None)

Evolve a quantum state by an operator.

Parameters

• QuantumChannel (other (Operator or) – or Instruction or Circuit): The operator to evolve by.
• qargs (list(opens in a new tab)) – a list of QuantumState subsystem positions to apply the operator on.

Returns

the output density matrix.

Return type

DensityMatrix

Raises

QiskitError – if the operator dimension does not match the specified QuantumState subsystem dimensions.

### expand

expand(other)

Return the tensor product state other ⊗ self.

Parameters

other (DensityMatrix) – a quantum state object.

Returns

the tensor product state other ⊗ self.

Return type

DensityMatrix

Raises

QiskitError – if other is not a quantum state.

### expectation_value

expectation_value(oper, qargs=None)

Compute the expectation value of an operator.

Parameters

Returns

the expectation value.

Return type

complex(opens in a new tab)

### from_instruction

classmethod from_instruction(instruction)

Return the output density matrix of an instruction.

The statevector is initialized in the state $|{0,\ldots,0}\rangle$ of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned.

Parameters

instruction (qiskit.circuit.Instruction orQuantumCircuit) – instruction or circuit

Returns

the final density matrix.

Return type

DensityMatrix

Raises

QiskitError – if the instruction contains invalid instructions for density matrix simulation.

### from_int

static from_int(i, dims)

Return a computational basis state density matrix.

Parameters

Returns

The computational basis state $|i\rangle\!\langle i|$.

Return type

DensityMatrix

The dims kwarg can be an integer or an iterable of integers.

• Iterable – the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.
• Int – the integer specifies the total dimension of the state. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.

### from_label

classmethod from_label(label)

Return a tensor product of Pauli X,Y,Z eigenstates.

LabelStatevector
"0"$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
"1"$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
"+"$\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
"-"$\frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$
"r"$\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$
"l"$\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$

Parameters

label (string) – a eigenstate string ket label (see table for allowed values).

Returns

The N-qubit basis state density matrix.

Return type

DensityMatrix

Raises

QiskitError – if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits.

### is_valid

is_valid(atol=None, rtol=None)

Return True if trace 1 and positive semidefinite.

### measure

measure(qargs=None)

Measure subsystems and return outcome and post-measure state.

Note that this function uses the QuantumStates internal random number generator for sampling the measurement outcome. The RNG seed can be set using the seed() method.

Parameters

qargs (list(opens in a new tab) or None) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).

Returns

the pair (outcome, state) where outcome is the

measurement outcome string label, and state is the collapsed post-measurement state for the corresponding outcome.

Return type

tuple(opens in a new tab)

### partial_transpose

partial_transpose(qargs)

Return partially transposed density matrix.

Parameters

qargs (list(opens in a new tab)) – The subsystems to be transposed.

Returns

The partially transposed density matrix.

Return type

DensityMatrix

### probabilities

probabilities(qargs=None, decimals=None)

Return the subsystem measurement probability vector.

Measurement probabilities are with respect to measurement in the computation (diagonal) basis.

Parameters

• qargs (None or list(opens in a new tab)) – subsystems to return probabilities for, if None return for all subsystems (Default: None).
• decimals (None or int(opens in a new tab)) – the number of decimal places to round values. If None no rounding is done (Default: None).

Returns

The Numpy vector array of probabilities.

Return type

np.array

Examples

Consider a 2-qubit product state $\rho=\rho_1\otimes\rho_0$ with $\rho_1=|+\rangle\!\langle+|$, $\rho_0=|0\rangle\!\langle0|$.

from qiskit.quantum_info import DensityMatrix

rho = DensityMatrix.from_label('+0')

# Probabilities for measuring both qubits
probs = rho.probabilities()
print('probs: {}'.format(probs))

# Probabilities for measuring only qubit-0
probs_qubit_0 = rho.probabilities([0])
print('Qubit-0 probs: {}'.format(probs_qubit_0))

# Probabilities for measuring only qubit-1
probs_qubit_1 = rho.probabilities([1])
print('Qubit-1 probs: {}'.format(probs_qubit_1))
probs: [0.5 0.  0.5 0. ]
Qubit-0 probs: [1. 0.]
Qubit-1 probs: [0.5 0.5]

We can also permute the order of qubits in the qargs list to change the qubit position in the probabilities output

from qiskit.quantum_info import DensityMatrix

rho = DensityMatrix.from_label('+0')

# Probabilities for measuring both qubits
probs = rho.probabilities([0, 1])
print('probs: {}'.format(probs))

# Probabilities for measuring both qubits
# but swapping qubits 0 and 1 in output
probs_swapped = rho.probabilities([1, 0])
print('Swapped probs: {}'.format(probs_swapped))
probs: [0.5 0.  0.5 0. ]
Swapped probs: [0.5 0.5 0.  0. ]

### probabilities_dict

probabilities_dict(qargs=None, decimals=None)

Return the subsystem measurement probability dictionary.

Measurement probabilities are with respect to measurement in the computation (diagonal) basis.

This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.

Parameters

• qargs (None or list(opens in a new tab)) – subsystems to return probabilities for, if None return for all subsystems (Default: None).
• decimals (None or int(opens in a new tab)) – the number of decimal places to round values. If None no rounding is done (Default: None).

Returns

The measurement probabilities in dict (ket) form.

Return type

dict(opens in a new tab)

### purity

purity()

Return the purity of the quantum state.

### reset

reset(qargs=None)

Reset state or subsystems to the 0-state.

Parameters

qargs (list(opens in a new tab) or None) – subsystems to reset, if None all subsystems will be reset to their 0-state (Default: None).

Returns

the reset state.

Return type

DensityMatrix

If all subsystems are reset this will return the ground state on all subsystems. If only a some subsystems are reset this function will perform evolution by the reset SuperOp of the reset subsystems.

### reverse_qargs

reverse_qargs()

Return a DensityMatrix with reversed subsystem ordering.

For a tensor product state this is equivalent to reversing the order of tensor product subsystems. For a density matrix $\rho = \rho_{n-1} \otimes ... \otimes \rho_0$ the returned state will be $\rho_0 \otimes ... \otimes \rho_{n-1}$.

Returns

the state with reversed subsystem order.

Return type

DensityMatrix

### sample_counts

sample_counts(shots, qargs=None)

Sample a dict of qubit measurement outcomes in the computational basis.

Parameters

Returns

sampled counts dictionary.

Return type

Counts

This function samples measurement outcomes using the measure probabilities() for the current state and qargs. It does not actually implement the measurement so the current state is not modified.

The seed for random number generator used for sampling can be set to a fixed value by using the stats seed() method.

### sample_memory

sample_memory(shots, qargs=None)

Sample a list of qubit measurement outcomes in the computational basis.

Parameters

Returns

list of sampled counts if the order sampled.

Return type

np.array

This function samples measurement outcomes using the measure probabilities() for the current state and qargs. It does not actually implement the measurement so the current state is not modified.

The seed for random number generator used for sampling can be set to a fixed value by using the stats seed() method.

### seed

seed(value=None)

Set the seed for the quantum state RNG.

### tensor

tensor(other)

Return the tensor product state self ⊗ other.

Parameters

other (DensityMatrix) – a quantum state object.

Returns

the tensor product operator self ⊗ other.

Return type

DensityMatrix

Raises

QiskitError – if other is not a quantum state.

### to_dict

to_dict(decimals=None)

Convert the density matrix to dictionary form.

This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.

Parameters

decimals (None or int(opens in a new tab)) – the number of decimal places to round values. If None no rounding is done (Default: None).

Returns

the dictionary form of the DensityMatrix.

Return type

dict(opens in a new tab)

Examples

The ket-form of a 2-qubit density matrix $rho = |-\rangle\!\langle -|\otimes |0\rangle\!\langle 0|$

from qiskit.quantum_info import DensityMatrix

rho = DensityMatrix.from_label('-0')
print(rho.to_dict())
{
'00|00': (0.4999999999999999+0j),
'10|00': (-0.4999999999999999-0j),
'00|10': (-0.4999999999999999+0j),
'10|10': (0.4999999999999999+0j)
}

For non-qubit subsystems the integer range can go from 0 to 9. For example in a qutrit system

import numpy as np
from qiskit.quantum_info import DensityMatrix

mat = np.zeros((9, 9))
mat[0, 0] = 0.25
mat[3, 3] = 0.25
mat[6, 6] = 0.25
mat[-1, -1] = 0.25
rho = DensityMatrix(mat, dims=(3, 3))
print(rho.to_dict())
{'00|00': (0.25+0j), '10|10': (0.25+0j), '20|20': (0.25+0j), '22|22': (0.25+0j)}

For large subsystem dimensions delimiters are required. The following example is for a 20-dimensional system consisting of a qubit and 10-dimensional qudit.

import numpy as np
from qiskit.quantum_info import DensityMatrix

mat = np.zeros((2 * 10, 2 * 10))
mat[0, 0] = 0.5
mat[-1, -1] = 0.5
rho = DensityMatrix(mat, dims=(2, 10))
print(rho.to_dict())
{'00|00': (0.5+0j), '91|91': (0.5+0j)}

### to_operator

to_operator()

Convert to Operator

Return type

Operator

### to_statevector

to_statevector(atol=None, rtol=None)

Return a statevector from a pure density matrix.

Parameters

Returns

The pure density matrix’s corresponding statevector.

Corresponds to the eigenvector of the only non-zero eigenvalue.

Return type

Statevector

Raises

QiskitError – if the state is not pure.

### trace

trace()

Return the trace of the density matrix.