Skip to main contentIBM Quantum Documentation

RGQFTMultiplier

qiskit.circuit.library.RGQFTMultiplier(num_state_qubits, num_result_qubits=None, name='RGQFTMultiplier') GitHub(opens in a new tab)

Bases: Multiplier

A QFT multiplication circuit to store product of two input registers out-of-place.

Multiplication in this circuit is implemented using the procedure of Fig. 3 in [1], where weighted sum rotations are implemented as given in Fig. 5 in [1]. QFT is used on the output register and is followed by rotations controlled by input registers. The rotations transform the state into the product of two input registers in QFT base, which is reverted from QFT base using inverse QFT. As an example, a circuit that performs a modular QFT multiplication on two 2-qubit sized input registers with an output register of 2 qubits, is as follows:

  a_0: ────────────────────────────────────────■───────■──────■──────■────────────────
                                               │       │      │      │
  a_1: ─────────■───────■───────■───────■──────┼───────┼──────┼──────┼────────────────
                │       │       │       │      │       │      │      │
  b_0: ─────────┼───────┼───────■───────■──────┼───────┼──────■──────■────────────────
                │       │       │       │      │       │      │      │
  b_1: ─────────■───────■───────┼───────┼──────■───────■──────┼──────┼────────────────
       ┌──────┐ │P(4π)  │       │P(2π)  │      │P(2π)  │      │P(π)  │       ┌───────┐
out_0:0     ├─■───────┼───────■───────┼──────■───────┼──────■──────┼───────┤0
       │  qft │         │P(2π)P(π)P(π)P/2) │  iqft │
out_1:1     ├─────────■───────────────■──────────────■─────────────■───────┤1
       └──────┘                                                              └───────┘

References:

[1] Ruiz-Perez et al., Quantum arithmetic with the Quantum Fourier Transform, 2017. arXiv:1411.5949(opens in a new tab)

Parameters

  • num_state_qubits (int(opens in a new tab)) – The number of qubits in either input register for state a|a\rangle or b|b\rangle. The two input registers must have the same number of qubits.
  • num_result_qubits (int(opens in a new tab) | None) – The number of result qubits to limit the output to. If number of result qubits is nn, multiplication modulo 2n2^n is performed to limit the output to the specified number of qubits. Default value is 2 * num_state_qubits to represent any possible result from the multiplication of the two inputs.
  • name (str(opens in a new tab)) – The name of the circuit object.

Attributes

ancillas

Returns a list of ancilla bits in the order that the registers were added.

calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}

clbits

Returns a list of classical bits in the order that the registers were added.

data

Return the circuit data (instructions and context).

Returns

a list-like object containing the CircuitInstructions for each instruction.

Return type

QuantumCircuitData

global_phase

Return the global phase of the current circuit scope in radians.

instances

= 412

layout

Return any associated layout information about the circuit

This attribute contains an optional TranspileLayout object. This is typically set on the output from transpile() or PassManager.run() to retain information about the permutations caused on the input circuit by transpilation.

There are two types of permutations caused by the transpile() function, an initial layout which permutes the qubits based on the selected physical qubits on the Target, and a final layout which is an output permutation caused by SwapGates inserted during routing.

metadata

The user provided metadata associated with the circuit.

The metadata for the circuit is a user provided dict of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

num_ancillas

Return the number of ancilla qubits.

num_clbits

Return number of classical bits.

num_parameters

The number of parameter objects in the circuit.

num_qubits

Return number of qubits.

num_result_qubits

The number of result qubits to limit the output to.

Returns

The number of result qubits.

num_state_qubits

The number of state qubits, i.e. the number of bits in each input register.

Returns

The number of state qubits.

op_start_times

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

Returns

List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data.

Raises

AttributeError(opens in a new tab) – When circuit is not scheduled.

parameters

The parameters defined in the circuit.

This attribute returns the Parameter objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector are still sorted numerically.

Examples

The snippet below shows that insertion order of parameters does not matter.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters  # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])

Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
   ┌─────────────────────────────┐
q:U(angle_1,angle_2,angle_10)
   └─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])

To respect numerical sorting, a ParameterVector can be used.

>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
...     circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
    ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
    ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
    ..., ParameterVectorElement(x[11])
])

Returns

The sorted Parameter objects in the circuit.

prefix

= 'circuit'

qubits

Returns a list of quantum bits in the order that the registers were added.

Was this page helpful?
Report a bug or request content on GitHub.