# GroverOperator

class qiskit.circuit.library.GroverOperator(oracle, state_preparation=None, zero_reflection=None, reflection_qubits=None, insert_barriers=False, mcx_mode='noancilla', name='Q')

GitHub(opens in a new tab)

Bases: QuantumCircuit

The Grover operator.

Grover’s search algorithm [1, 2] consists of repeated applications of the so-called Grover operator used to amplify the amplitudes of the desired output states. This operator, $\mathcal{Q}$, consists of the phase oracle, $\mathcal{S}_f$, zero phase-shift or zero reflection, $\mathcal{S}_0$, and an input state preparation $\mathcal{A}$:

$\mathcal{Q} = \mathcal{A} \mathcal{S}_0 \mathcal{A}^\dagger \mathcal{S}_f$

In the standard Grover search we have $\mathcal{A} = H^{\otimes n}$:

$\mathcal{Q} = H^{\otimes n} \mathcal{S}_0 H^{\otimes n} \mathcal{S}_f = D \mathcal{S_f}$

The operation $D = H^{\otimes n} \mathcal{S}_0 H^{\otimes n}$ is also referred to as diffusion operator. In this formulation we can see that Grover’s operator consists of two steps: first, the phase oracle multiplies the good states by -1 (with $\mathcal{S}_f$) and then the whole state is reflected around the mean (with $D$).

This class allows setting a different state preparation, as in quantum amplitude amplification (a generalization of Grover’s algorithm), $\mathcal{A}$ might not be a layer of Hardamard gates [3].

The action of the phase oracle $\mathcal{S}_f$ is defined as

$\mathcal{S}_f: |x\rangle \mapsto (-1)^{f(x)}|x\rangle$

where $f(x) = 1$ if $x$ is a good state and 0 otherwise. To highlight the fact that this oracle flips the phase of the good states and does not flip the state of a result qubit, we call $\mathcal{S}_f$ a phase oracle.

Note that you can easily construct a phase oracle from a bitflip oracle by sandwiching the controlled X gate on the result qubit by a X and H gate. For instance

Bitflip oracle     Phaseflip oracle
q_0: ──■──         q_0: ────────────■────────────
┌─┴─┐              ┌───┐┌───┐┌─┴─┐┌───┐┌───┐
out: ┤ X ├         out: ┤ X ├┤ H ├┤ X ├┤ H ├┤ X ├
└───┘              └───┘└───┘└───┘└───┘└───┘

There is some flexibility in defining the oracle and $\mathcal{A}$ operator. Before the Grover operator is applied in Grover’s algorithm, the qubits are first prepared with one application of the $\mathcal{A}$ operator (or Hadamard gates in the standard formulation). Thus, we always have operation of the form $\mathcal{A} \mathcal{S}_f \mathcal{A}^\dagger$. Therefore it is possible to move bitflip logic into $\mathcal{A}$ and leaving the oracle only to do phaseflips via Z gates based on the bitflips. One possible use-case for this are oracles that do not uncompute the state qubits.

The zero reflection $\mathcal{S}_0$ is usually defined as

$\mathcal{S}_0 = 2 |0\rangle^{\otimes n} \langle 0|^{\otimes n} - \mathbb{I}_n$

where $\mathbb{I}_n$ is the identity on $n$ qubits. By default, this class implements the negative version $2 |0\rangle^{\otimes n} \langle 0|^{\otimes n} - \mathbb{I}_n$, since this can simply be implemented with a multi-controlled Z sandwiched by X gates on the target qubit and the introduced global phase does not matter for Grover’s algorithm.

Examples

>>> from qiskit.circuit import QuantumCircuit
>>> from qiskit.circuit.library import GroverOperator
>>> oracle = QuantumCircuit(2)
>>> oracle.z(0)  # good state = first qubit is |1>
>>> grover_op = GroverOperator(oracle, insert_barriers=True)
>>> grover_op.decompose().draw()
┌───┐ ░ ┌───┐ ░ ┌───┐          ┌───┐      ░ ┌───┐
state_0: ┤ Z ├─░─┤ H ├─░─┤ X ├───────■──┤ X ├──────░─┤ H ├
└───┘ ░ ├───┤ ░ ├───┤┌───┐┌─┴─┐├───┤┌───┐ ░ ├───┤
state_1: ──────░─┤ H ├─░─┤ X ├┤ H ├┤ X ├┤ H ├┤ X ├─░─┤ H ├
░ └───┘ ░ └───┘└───┘└───┘└───┘└───┘ ░ └───┘
>>> oracle = QuantumCircuit(1)
>>> oracle.z(0)  # the qubit state |1> is the good state
>>> state_preparation = QuantumCircuit(1)
>>> state_preparation.ry(0.2, 0)  # non-uniform state preparation
>>> grover_op = GroverOperator(oracle, state_preparation)
>>> grover_op.decompose().draw()
┌───┐┌──────────┐┌───┐┌───┐┌───┐┌─────────┐
state_0: ┤ Z ├┤ RY(-0.2) ├┤ X ├┤ Z ├┤ X ├┤ RY(0.2) ├
└───┘└──────────┘└───┘└───┘└───┘└─────────┘
>>> oracle = QuantumCircuit(4)
>>> oracle.z(3)
>>> reflection_qubits = [0, 3]
>>> state_preparation = QuantumCircuit(4)
>>> state_preparation.cry(0.1, 0, 3)
>>> state_preparation.ry(0.5, 3)
>>> grover_op = GroverOperator(oracle, state_preparation,
... reflection_qubits=reflection_qubits)
>>> grover_op.decompose().draw()
┌───┐          ┌───┐
state_0: ──────────────────────■──────┤ X ├───────■──┤ X ├──────────■────────────────
│      └───┘       │  └───┘          │
state_1: ──────────────────────┼──────────────────┼─────────────────┼────────────────
│                  │                 │
state_2: ──────────────────────┼──────────────────┼─────────────────┼────────────────
┌───┐┌──────────┐┌────┴─────┐┌───┐┌───┐┌─┴─┐┌───┐┌───┐┌────┴────┐┌─────────┐
state_3: ┤ Z ├┤ RY(-0.5) ├┤ RY(-0.1) ├┤ X ├┤ H ├┤ X ├┤ H ├┤ X ├┤ RY(0.1) ├┤ RY(0.5) ├
└───┘└──────────┘└──────────┘└───┘└───┘└───┘└───┘└───┘└─────────┘└─────────┘
>>> mark_state = Statevector.from_label('011')
>>> diffuse_operator = 2 * DensityMatrix.from_label('000') - Operator.from_label('III')
>>> grover_op = GroverOperator(oracle=mark_state, zero_reflection=diffuse_operator)
>>> grover_op.decompose().draw(fold=70)
┌─────────────────┐      ┌───┐                          »
state_0: ┤0                ├──────┤ H ├──────────────────────────»
│                 │┌─────┴───┴─────┐     ┌───┐          »
state_1: ┤1 UCRZ(0,pi,0,0) ├┤0              ├─────┤ H ├──────────»
│                 ││  UCRZ(pi/2,0) │┌────┴───┴────┐┌───┐»
state_2: ┤2                ├┤1              ├┤ UCRZ(-pi/4) ├┤ H ├»
└─────────────────┘└───────────────┘└─────────────┘└───┘»
«         ┌─────────────────┐      ┌───┐
«state_0: ┤0                ├──────┤ H ├─────────────────────────
«         │                 │┌─────┴───┴─────┐    ┌───┐
«state_1: ┤1 UCRZ(pi,0,0,0) ├┤0              ├────┤ H ├──────────
«         │                 ││  UCRZ(pi/2,0) │┌───┴───┴────┐┌───┐
«state_2: ┤2                ├┤1              ├┤ UCRZ(pi/4) ├┤ H ├
«         └─────────────────┘└───────────────┘└────────────┘└───┘

References

[1]: L. K. Grover (1996), A fast quantum mechanical algorithm for database search,

[2]: I. Chuang & M. Nielsen, Quantum Computation and Quantum Information,

Cambridge: Cambridge University Press, 2000. Chapter 6.1.2.

[3]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000).

Quantum Amplitude Amplification and Estimation. arXiv:quant-ph/0005055(opens in a new tab).

Parameters

• oracle (Union[QuantumCircuit, Statevector]) – The phase oracle implementing a reflection about the bad state. Note that this is not a bitflip oracle, see the docstring for more information.
• state_preparation (Optional[QuantumCircuit]) – The operator preparing the good and bad state. For Grover’s algorithm, this is a n-qubit Hadamard gate and for amplitude amplification or estimation the operator $\mathcal{A}$.
• zero_reflection (Optional[Union[QuantumCircuit, DensityMatrix, Operator]]) – The reflection about the zero state, $\mathcal{S}_0$.
• reflection_qubits (Optional[List[int(opens in a new tab)]]) – Qubits on which the zero reflection acts on.
• insert_barriers (bool(opens in a new tab)) – Whether barriers should be inserted between the reflections and A.
• mcx_mode (str(opens in a new tab)) – The mode to use for building the default zero reflection.
• name (str(opens in a new tab)) – The name of the circuit.

## Attributes

### ancillas

A list of AncillaQubits in the order that they were added. You should not mutate this.

### calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}

### clbits

A list of Clbits in the order that they were added. You should not mutate this.

### data

The circuit data (instructions and context).

Returns

a list-like object containing the CircuitInstructions for each instruction.

Return type

QuantumCircuitData

### global_phase

The global phase of the current circuit scope in radians.

### instances

Default value: 198

### layout

Return any associated layout information about the circuit

This attribute contains an optional TranspileLayout object. This is typically set on the output from transpile() or PassManager.run() to retain information about the permutations caused on the input circuit by transpilation.

There are two types of permutations caused by the transpile() function, an initial layout which permutes the qubits based on the selected physical qubits on the Target, and a final layout which is an output permutation caused by SwapGates inserted during routing.

Arbitrary user-defined metadata for the circuit.

Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.

### num_ancillas

Return the number of ancilla qubits.

### num_captured_vars

The number of real-time classical variables in the circuit marked as captured from an enclosing scope.

This is the length of the iter_captured_vars() iterable. If this is non-zero, num_input_vars must be zero.

### num_clbits

Return number of classical bits.

### num_declared_vars

The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.

This is the length of the iter_declared_vars() iterable.

### num_input_vars

The number of real-time classical variables in the circuit marked as circuit inputs.

This is the length of the iter_input_vars() iterable. If this is non-zero, num_captured_vars must be zero.

### num_parameters

The number of parameter objects in the circuit.

### num_qubits

Return number of qubits.

### num_vars

The number of real-time classical variables in the circuit.

This is the length of the iter_vars() iterable.

### op_start_times

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

Returns

List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data.

Raises

AttributeError(opens in a new tab) – When circuit is not scheduled.

### parameters

The parameters defined in the circuit.

This attribute returns the Parameter objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector are still sorted numerically.

Examples

The snippet below shows that insertion order of parameters does not matter.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters  # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])

Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])

To respect numerical sorting, a ParameterVector can be used.

>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
...     circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])

Returns

The sorted Parameter objects in the circuit.

### prefix

Default value: 'circuit'

### qubits

A list of Qubits in the order that they were added. You should not mutate this.

### reflection_qubits

Reflection qubits, on which S0 is applied (if S0 is not user-specified).

### state_preparation

The subcircuit implementing the A operator or Hadamards.

### zero_reflection

The subcircuit implementing the reflection about 0.

### name

Type: str

A human-readable name for the circuit.

### qregs

Type: list[QuantumRegister]

A list of the QuantumRegisters in this circuit. You should not mutate this.

### cregs

Type: list[ClassicalRegister]

A list of the ClassicalRegisters in this circuit. You should not mutate this.

### duration

Type: int | float | None

The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by unit.

### unit

The unit that duration is specified in.