# FourierChecking

`qiskit.circuit.library.FourierChecking(f, g)`

Bases: `QuantumCircuit`

Fourier checking circuit.

The circuit for the Fourier checking algorithm, introduced in [1], involves a layer of Hadamards, the function $f$, another layer of Hadamards, the function $g$, followed by a final layer of Hadamards. The functions $f$ and $g$ are classical functions realized as phase oracles (diagonal operators with {-1, 1} on the diagonal).

The probability of observing the all-zeros string is $p(f,g)$. The algorithm solves the promise Fourier checking problem, which decides if f is correlated with the Fourier transform of g, by testing if $p(f,g) <= 0.01$ or $p(f,g) >= 0.05$, promised that one or the other of these is true.

The functions $f$ and $g$ are currently implemented from their truth tables but could be represented concisely and implemented efficiently for special classes of functions.

Fourier checking is a special case of $k$-fold forrelation [2].

**Reference:**

[1] S. Aaronson, BQP and the Polynomial Hierarchy, 2009 (Section 3.2). arXiv:0910.4698 (opens in a new tab)

[2] S. Aaronson, A. Ambainis, Forrelation: a problem that optimally separates quantum from classical computing, 2014. arXiv:1411.5729 (opens in a new tab)

Create Fourier checking circuit.

**Parameters**

**f**(*List*(opens in a new tab)*[**int*(opens in a new tab)*]*) – truth table for f, length 2**n list of {1,-1}.**g**(*List*(opens in a new tab)*[**int*(opens in a new tab)*]*) – truth table for g, length 2**n list of {1,-1}.

**Raises**

**CircuitError** – if the inputs f and g are not valid.

**Reference Circuit:**

## Attributes

### ancillas

Returns a list of ancilla bits in the order that the registers were added.

### calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`

### clbits

Returns a list of classical bits in the order that the registers were added.

### data

Return the circuit data (instructions and context).

**Returns**

a list-like object containing the `CircuitInstruction`

s for each instruction.

**Return type**

QuantumCircuitData

### extension_lib

`= 'include "qelib1.inc";'`

### global_phase

Return the global phase of the current circuit scope in radians.

### header

`= 'OPENQASM 2.0;'`

### instances

`= 167`

### layout

Return any associated layout information about the circuit

This attribute contains an optional `TranspileLayout`

object. This is typically set on the output from `transpile()`

or `PassManager.run()`

to retain information about the permutations caused on the input circuit by transpilation.

There are two types of permutations caused by the `transpile()`

function, an initial layout which permutes the qubits based on the selected physical qubits on the `Target`

, and a final layout which is an output permutation caused by `SwapGate`

s inserted during routing.

### metadata

The user provided metadata associated with the circuit.

The metadata for the circuit is a user provided `dict`

of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

### num_ancillas

Return the number of ancilla qubits.

### num_clbits

Return number of classical bits.

### num_parameters

The number of parameter objects in the circuit.

### num_qubits

Return number of qubits.

### op_start_times

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

**Returns**

List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`

.

**Raises**

**AttributeError** (opens in a new tab) – When circuit is not scheduled.

### parameters

The parameters defined in the circuit.

This attribute returns the `Parameter`

objects in the circuit sorted alphabetically. Note that parameters instantiated with a `ParameterVector`

are still sorted numerically.

## Examples

The snippet below shows that insertion order of parameters does not matter.

```
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
```

Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.

```
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
```

To respect numerical sorting, a `ParameterVector`

can be used.

` `

```
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
```

**Returns**

The sorted `Parameter`

objects in the circuit.

### prefix

`= 'circuit'`

### qubits

Returns a list of quantum bits in the order that the registers were added.