Skip to main contentIBM Quantum Documentation

SwitchCaseOp

class qiskit.circuit.SwitchCaseOp(target, cases, *, label=None)

GitHub

Bases: ControlFlowOp

A circuit operation that executes one particular circuit block based on matching a given target against an ordered list of values. The special value CASE_DEFAULT can be used to represent a default condition.

Parameters

  • target (Clbit |ClassicalRegister |expr.Expr) – the real-time value to switch on.
  • cases (Iterable[Tuple[Any, QuantumCircuit]]) – an ordered iterable of the corresponding value of the target and the circuit block that should be executed if this is matched. There is no fall-through between blocks, and the order matters.

Attributes

base_class

Get the base class of this instruction. This is guaranteed to be in the inheritance tree of self.

The “base class” of an instruction is the lowest class in its inheritance tree that the object should be considered entirely compatible with for _all_ circuit applications. This typically means that the subclass is defined purely to offer some sort of programmer convenience over the base class, and the base class is the “true” class for a behavioral perspective. In particular, you should not override base_class if you are defining a custom version of an instruction that will be implemented differently by hardware, such as an alternative measurement strategy, or a version of a parametrized gate with a particular set of parameters for the purposes of distinguishing it in a Target from the full parametrized gate.

This is often exactly equivalent to type(obj), except in the case of singleton instances of standard-library instructions. These singleton instances are special subclasses of their base class, and this property will return that base. For example:

>>> isinstance(XGate(), XGate)
True
>>> type(XGate()) is XGate
False
>>> XGate().base_class is XGate
True

In general, you should not rely on the precise class of an instruction; within a given circuit, it is expected that Instruction.name should be a more suitable discriminator in most situations.

blocks

condition

The classical condition on the instruction.

condition_bits

Get Clbits in condition.

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

mutable

Is this instance is a mutable unique instance or not.

If this attribute is False the gate instance is a shared singleton and is not mutable.

name

Return the name.

num_clbits

Return the number of clbits.

num_qubits

Return the number of qubits.

params

The parameters of this Instruction. Ideally these will be gate angles.

unit

Get the time unit of duration.


Methods

add_decomposition

add_decomposition(decomposition)

GitHub

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble

assemble()

GitHub

Assemble a QasmQobjInstruction

Deprecated since version 1.2

The method qiskit.circuit.instruction.Instruction.assemble() is deprecated as of qiskit 1.2. It will be removed in the 2.0 release. The Qobj class and related functionality are part of the deprecated BackendV1 workflow, and no longer necessary for BackendV2. If a user workflow requires Qobj it likely relies on deprecated functionality and should be updated to use BackendV2.

broadcast_arguments

broadcast_arguments(qargs, cargs)

GitHub

Validation of the arguments.

Parameters

  • qargs (List) – List of quantum bit arguments.
  • cargs (List) – List of classical bit arguments.

Yields

Tuple(List, List) – A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if

c_if(classical, val)

GitHub

Set a classical equality condition on this instruction between the register or cbit classical and value val.

Note

This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.

cases

cases()

GitHub

Return a lookup table from case labels to the circuit that would be executed in that case. This object is not generally suitable for creating a new SwitchCaseOp because any keys that point to the same object will not be grouped.

See also

SwitchCaseOp.cases_specifier()

An alternate method that produces its output in a suitable format for creating new SwitchCaseOp instances.

cases_specifier

cases_specifier()

GitHub

Return an iterable where each element is a 2-tuple whose first element is a tuple of jump values, and whose second is the single circuit block that is associated with those values.

This is an abstract specification of the jump table suitable for creating new SwitchCaseOp instances.

See also

SwitchCaseOp.cases()

Create a lookup table that you can use for your own purposes to jump from values to the circuit that would be executed.

Return type

Iterable[Tuple[Tuple, QuantumCircuit]]

copy

copy(name=None)

GitHub

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

inverse(annotated=False)

GitHub

Invert this instruction.

If annotated is False, the inverse instruction is implemented as a fresh instruction with the recursively inverted definition.

If annotated is True, the inverse instruction is implemented as AnnotatedOperation, and corresponds to the given instruction annotated with the “inverse modifier”.

Special instructions inheriting from Instruction can implement their own inverse (e.g. T and Tdg, Barrier, etc.) In particular, they can choose how to handle the argument annotated which may include ignoring it and always returning a concrete gate class if the inverse is defined as a standard gate.

Parameters

annotated (bool) – if set to True the output inverse gate will be returned as AnnotatedOperation.

Returns

The inverse operation.

Raises

CircuitError – if the instruction is not composite and an inverse has not been implemented for it.

is_parameterized

is_parameterized()

GitHub

Return whether the Instruction contains compile-time parameters.

iter_captured_vars

iter_captured_vars()

GitHub

Get an iterator over the unique captured variables in all blocks of this construct.

Return type

Iterable[expr.Var]

repeat

repeat(n)

GitHub

Creates an instruction with self repeated :math`n` times.

If this operation has a conditional, the output instruction will have the same conditional and the inner repeated operations will be unconditional; instructions within a compound definition cannot be conditioned on registers within Qiskit’s data model. This means that it is not valid to apply a repeated instruction to a clbit that it both writes to and reads from in its condition.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

replace_blocks

replace_blocks(blocks)

GitHub

Return a new version of this control-flow operations with the blocks mapped to the given new ones.

Typically this is used in a workflow such as:

existing_op = ...
 
def map_block(block: QuantumCircuit) -> QuantumCircuit:
    new_block = block.copy_empty_like()
    # ... do something to `new_block` ...
    return new_block
 
new_op = existing_op.replace_blocks(
    map_block(block) for block in existing_op.blocks
)

It is the caller’s responsibility to ensure that the mapped blocks are defined over a unified set of circuit resources, much like constructing a ControlFlowOp using its default constructor.

Parameters

blocks (Iterable[QuantumCircuit]) – the new subcircuit blocks to use.

Returns

New ControlFlowOp with replaced blocks.

Return type

SwitchCaseOp

reverse_ops

reverse_ops()

GitHub

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Returns

a new instruction with

sub-instructions reversed.

Return type

qiskit.circuit.Instruction

soft_compare

soft_compare(other)

GitHub

Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.

Parameters

other (instruction) – other instruction.

Returns

are self and other equal up to parameter expressions.

Return type

bool

to_mutable

to_mutable()

GitHub

Return a mutable copy of this gate.

This method will return a new mutable copy of this gate instance. If a singleton instance is being used this will be a new unique instance that can be mutated. If the instance is already mutable it will be a deepcopy of that instance.

validate_parameter

validate_parameter(parameter)

GitHub

Instruction parameters has no validation or normalization.

Was this page helpful?
Report a bug or request content on GitHub.