Skip to main contentIBM Quantum Documentation

GSLS

qiskit.algorithms.optimizers.GSLS(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50)

Bases: Optimizer

Gaussian-smoothed Line Search.

An implementation of the line search algorithm described in https://arxiv.org/pdf/1905.01332.pdf (opens in a new tab), using gradient approximation based on Gaussian-smoothed samples on a sphere.

Note

This component has some function that is normally random. If you want to reproduce behavior then you should set the random number generator seed in the algorithm_globals (qiskit.utils.algorithm_globals.random_seed = seed).

Parameters


Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings


Methods

get_support_level

get_support_level()

Return support level dictionary.

Returns

A dictionary containing the support levels for different options.

Return type

dict (opens in a new tab)[str (opens in a new tab), int (opens in a new tab)]

gradient_approximation

gradient_approximation(n, x, x_value, directions, sample_set_x, sample_set_y)

Construct gradient approximation from given sample.

Parameters

Returns

Gradient approximation at x, as a 1D array.

Return type

ndarray (opens in a new tab)

gradient_num_diff

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float (opens in a new tab)) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int (opens in a new tab)) – max evals grouped, defaults to 1 (i.e. no batching).

Returns

the gradient computed

Return type

grad

ls_optimize

ls_optimize(n, obj_fun, initial_point, var_lb, var_ub)

Run the line search optimization.

Parameters

Returns

Final iterate as a vector, corresponding objective function value, number of evaluations, and norm of the gradient estimate.

Raises

ValueError (opens in a new tab) – If the number of dimensions mismatches the size of the initial point or the length of the lower or upper bound.

Return type

tuple (opens in a new tab)[numpy.ndarray (opens in a new tab), float (opens in a new tab), int (opens in a new tab), float (opens in a new tab)]

minimize

minimize(fun, x0, jac=None, bounds=None)

Minimize the scalar function.

Parameters

Returns

The result of the optimization, containing e.g. the result as attribute x.

Return type

OptimizerResult

print_options()

Print algorithm-specific options.

sample_points

sample_points(n, x, num_points)

Sample num_points points around x on the n-sphere of specified radius.

The radius of the sphere is self._options['sampling_radius'].

Parameters

Returns

A tuple containing the sampling points and the directions.

Return type

tuple (opens in a new tab)[numpy.ndarray (opens in a new tab), numpy.ndarray (opens in a new tab)]

sample_set

sample_set(n, x, var_lb, var_ub, num_points)

Construct sample set of given size.

Parameters

Returns

Matrices of (unit-norm) sample directions and sample points, one per row. Both matrices are 2D arrays of floats.

Raises

RuntimeError (opens in a new tab) – If not enough samples could be generated within the bounds.

Return type

tuple (opens in a new tab)[numpy.ndarray (opens in a new tab), numpy.ndarray (opens in a new tab)]

set_max_evals_grouped

set_max_evals_grouped(limit)

Set max evals grouped

set_options

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict (opens in a new tab)) – options, given as name=value.

wrap_function

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

Returns

wrapper

Return type

function_wrapper

Was this page helpful?