Skip to main contentIBM Quantum Documentation

ADAM

qiskit.algorithms.optimizers.ADAM(maxiter=10000, tol=1e-06, lr=0.001, beta_1=0.9, beta_2=0.99, noise_factor=1e-08, eps=1e-10, amsgrad=False, snapshot_dir=None)

Bases: Optimizer

Adam and AMSGRAD optimizers.

Adam [1] is a gradient-based optimization algorithm that is relies on adaptive estimates of lower-order moments. The algorithm requires little memory and is invariant to diagonal rescaling of the gradients. Furthermore, it is able to cope with non-stationary objective functions and noisy and/or sparse gradients.

AMSGRAD [2] (a variant of Adam) uses a ‘long-term memory’ of past gradients and, thereby, improves convergence properties.


References

[1]: Kingma, Diederik & Ba, Jimmy (2014), Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 (opens in a new tab)

[2]: Sashank J. Reddi and Satyen Kale and Sanjiv Kumar (2018),

On the Convergence of Adam and Beyond. arXiv:1904.09237 (opens in a new tab)

Note

This component has some function that is normally random. If you want to reproduce behavior then you should set the random number generator seed in the algorithm_globals (qiskit.utils.algorithm_globals.random_seed = seed).

Parameters


Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings


Methods

get_support_level

get_support_level()

Return support level dictionary

gradient_num_diff

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float (opens in a new tab)) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int (opens in a new tab)) – max evals grouped, defaults to 1 (i.e. no batching).

Returns

the gradient computed

Return type

grad

load_params

load_params(load_dir)

Load iteration parameters for a file called adam_params.csv.

Parameters

load_dir (str (opens in a new tab)) – The directory containing adam_params.csv.

minimize

minimize(fun, x0, jac=None, bounds=None, objective_function=None, initial_point=None, gradient_function=None)

Minimize the scalar function.

Deprecated since version 0.19.0

qiskit.algorithms.optimizers.adam_amsgrad.ADAM.minimize()’s argument gradient_function is deprecated as of qiskit-terra 0.19.0. It will be removed no earlier than 3 months after the release date. Instead, use the argument jac, which behaves identically.

Deprecated since version 0.19.0

qiskit.algorithms.optimizers.adam_amsgrad.ADAM.minimize()’s argument initial_point is deprecated as of qiskit-terra 0.19.0. It will be removed no earlier than 3 months after the release date. Instead, use the argument fun, which behaves identically.

Deprecated since version 0.19.0

qiskit.algorithms.optimizers.adam_amsgrad.ADAM.minimize()’s argument objective_function is deprecated as of qiskit-terra 0.19.0. It will be removed no earlier than 3 months after the release date. Instead, use the argument fun, which behaves identically.

Parameters

Returns

The result of the optimization, containing e.g. the result as attribute x.

Return type

OptimizerResult

print_options()

Print algorithm-specific options.

save_params

save_params(snapshot_dir)

Save the current iteration parameters to a file called adam_params.csv.

Note

The current parameters are appended to the file, if it exists already. The file is not overwritten.

Parameters

snapshot_dir (str (opens in a new tab)) – The directory to store the file in.

set_max_evals_grouped

set_max_evals_grouped(limit)

Set max evals grouped

set_options

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict (opens in a new tab)) – options, given as name=value.

wrap_function

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

Returns

wrapper

Return type

function_wrapper

Was this page helpful?