Layout
class qiskit.transpiler.Layout(input_dict=None)
Bases: object
Two-ways dict to represent a Layout.
construct a Layout from a bijective dictionary, mapping virtual qubits to physical qubits
Methods
add
add(virtual_bit, physical_bit=None)
Adds a map element between bit and physical_bit. If physical_bit is not defined, bit will be mapped to a new physical bit.
Parameters
add_register
add_register(reg)
Adds at the end physical_qubits that map each bit in reg.
Parameters
reg (Register) – A (qu)bit Register. For example, QuantumRegister(3, ‘qr’).
combine_into_edge_map
combine_into_edge_map(another_layout)
Combines self and another_layout into an “edge map”.
For example:
self another_layout resulting edge map
qr_1 -> 0 0 <- q_2 qr_1 -> q_2
qr_2 -> 2 2 <- q_1 qr_2 -> q_1
qr_3 -> 3 3 <- q_0 qr_3 -> q_0
The edge map is used to compose dags via, for example, compose.
Parameters
another_layout (Layout) – The other layout to combine.
Returns
A “edge map”.
Return type
Raises
LayoutError – another_layout can be bigger than self, but not smaller. Otherwise, raises.
compose
compose(other, qubits)
Compose this layout with another layout.
If this layout represents a mapping from the P-qubits to the positions of the Q-qubits, and the other layout represents a mapping from the Q-qubits to the positions of the R-qubits, then the composed layout represents a mapping from the P-qubits to the positions of the R-qubits.
Parameters
- other (Layout) – The existing
Layout
to compose thisLayout
with. - qubits (List[Qubit]) – A list of
Qubit
objects over whichother
is defined, used to establish the correspondence between the positions of theother
qubits and the actual qubits.
Returns
A new layout object the represents this layout composed with the other
layout.
Return type
copy
from_dict
from_dict(input_dict)
Populates a Layout from a dictionary.
The dictionary must be a bijective mapping between virtual qubits (tuple) and physical qubits (int).
Parameters
input_dict (dict) –
e.g.:
{(QuantumRegister(3, 'qr'), 0): 0,
(QuantumRegister(3, 'qr'), 1): 1,
(QuantumRegister(3, 'qr'), 2): 2}
Can be written more concisely as follows:
* virtual to physical::
{qr[0]: 0,
qr[1]: 1,
qr[2]: 2}
* physical to virtual::
{0: qr[0],
1: qr[1],
2: qr[2]}
from_intlist
static from_intlist(int_list, *qregs)
Converts a list of integers to a Layout mapping virtual qubits (index of the list) to physical qubits (the list values).
Parameters
- int_list (list) – A list of integers.
- *qregs (QuantumRegisters) – The quantum registers to apply the layout to.
Returns
The corresponding Layout object.
Return type
Raises
LayoutError – Invalid input layout.
from_qubit_list
static from_qubit_list(qubit_list, *qregs)
Populates a Layout from a list containing virtual qubits, Qubit or None.
Parameters
- qubit_list (list) – e.g.: [qr[0], None, qr[2], qr[3]]
- *qregs (QuantumRegisters) – The quantum registers to apply the layout to.
Returns
the corresponding Layout object
Return type
Raises
LayoutError – If the elements are not Qubit or None
generate_trivial_layout
static generate_trivial_layout(*regs)
Creates a trivial (“one-to-one”) Layout with the registers and qubits in regs.
Parameters
*regs (Registers, Qubits) – registers and qubits to include in the layout.
Returns
A layout with all the regs in the given order.
Return type
get_physical_bits
get_physical_bits()
Returns the dictionary where the keys are physical (qu)bits and the values are virtual (qu)bits.
get_registers
get_registers()
Returns the registers in the layout [QuantumRegister(2, ‘qr0’), QuantumRegister(3, ‘qr1’)] :returns: A set of Registers in the layout :rtype: Set
get_virtual_bits
get_virtual_bits()
Returns the dictionary where the keys are virtual (qu)bits and the values are physical (qu)bits.
inverse
inverse(source_qubits, target_qubits)
Finds the inverse of this layout.
This is possible when the layout is a bijective mapping, however the input and the output qubits may be different (in particular, this layout may be the mapping from the extended-with-ancillas virtual qubits to physical qubits). Thus, if this layout represents a mapping from the P-qubits to the positions of the Q-qubits, the inverse layout represents a mapping from the Q-qubits to the positions of the P-qubits.
Parameters
- source_qubits (List[Qubit]) – A list of
Qubit
objects representing the domain of the layout. - target_qubits (List[Qubit]) – A list of
Qubit
objects representing the image of the layout.
Returns
A new layout object the represents the inverse of this layout.
order_based_on_type
static order_based_on_type(value1, value2)
decides which one is physical/virtual based on the type. Returns (virtual, physical)
reorder_bits
reorder_bits(bits)
Given an ordered list of bits, reorder them according to this layout.
The list of bits must exactly match the virtual bits in this layout.
Parameters
bits (list[Bit]) – the bits to reorder.
Returns
ordered bits.
Return type
List
swap
swap(left, right)
Swaps the map between left and right.
Parameters
Raises
LayoutError – If left and right have not the same type.
to_permutation
to_permutation(qubits)
Creates a permutation corresponding to this layout.
This is possible when the layout is a bijective mapping with the same source and target qubits (for instance, a “final_layout” corresponds to a permutation of the physical circuit qubits). If this layout is a mapping from qubits to their new positions, the resulting permutation describes which qubits occupy the positions 0, 1, 2, etc. after applying the permutation.
For example, suppose that the list of qubits is [qr_0, qr_1, qr_2]
, and the layout maps qr_0
to 2
, qr_1
to 0
, and qr_2
to 1
. In terms of positions in qubits
, this maps 0
to 2
, 1
to 0
and 2
to 1
, with the corresponding permutation being [1, 2, 0]
.