Skip to main contentIBM Quantum Documentation
This page is from the dev version of Qiskit SDK. Go to the stable version

z_feature_map

class qiskit.circuit.library.z_feature_map(feature_dimension, reps=2, entanglement='full', alpha=2.0, data_map_func=None, parameter_prefix='x', insert_barriers=False, name='ZFeatureMap')

GitHub

Bases:

The first order Pauli Z-evolution circuit.

On 3 qubits and with 2 repetitions the circuit is represented by:

┌───┐┌─────────────┐┌───┐┌─────────────┐
┤ H ├┤ P(2.0*x[0]) ├┤ H ├┤ P(2.0*x[0]) ├
├───┤├─────────────┤├───┤├─────────────┤
┤ H ├┤ U(2.0*x[1]) ├┤ H ├┤ P(2.0*x[1]) ├
├───┤├─────────────┤├───┤├─────────────┤
┤ H ├┤ P(2.0*x[2]) ├┤ H ├┤ P(2.0*x[2]) ├
└───┘└─────────────┘└───┘└─────────────┘

This is a sub-class of PauliFeatureMap where the Pauli strings are fixed as [‘Z’]. As a result the first order expansion will be a circuit without entangling gates.

Examples

>>> prep = z_feature_map(3, reps=3, insert_barriers=True)
>>> print(prep)
     ┌───┐ ░ ┌─────────────┐ ░ ┌───┐ ░ ┌─────────────┐ ░ ┌───┐ ░ ┌─────────────┐
q_0: ┤ H ├─░─┤ P(2.0*x[0]) ├─░─┤ H ├─░─┤ P(2.0*x[0]) ├─░─┤ H ├─░─┤ P(2.0*x[0])
     ├───┤ ░ ├─────────────┤ ░ ├───┤ ░ ├─────────────┤ ░ ├───┤ ░ ├─────────────┤
q_1: ┤ H ├─░─┤ P(2.0*x[1]) ├─░─┤ H ├─░─┤ P(2.0*x[1]) ├─░─┤ H ├─░─┤ P(2.0*x[1])
     ├───┤ ░ ├─────────────┤ ░ ├───┤ ░ ├─────────────┤ ░ ├───┤ ░ ├─────────────┤
q_2: ┤ H ├─░─┤ P(2.0*x[2]) ├─░─┤ H ├─░─┤ P(2.0*x[2]) ├─░─┤ H ├─░─┤ P(2.0*x[2])
     └───┘ ░ └─────────────┘ ░ └───┘ ░ └─────────────┘ ░ └───┘ ░ └─────────────┘
>>> data_map = lambda x: x[0]*x[0] + 1  # note: input is an array
>>> prep = z_feature_map(3, reps=1, data_map_func=data_map)
>>> print(prep)
     ┌───┐┌──────────────────────┐
q_0: ┤ H ├┤ P(2.0*x[0]**2 + 2.0)
     ├───┤├──────────────────────┤
q_1: ┤ H ├┤ P(2.0*x[1]**2 + 2.0)
     ├───┤├──────────────────────┤
q_2: ┤ H ├┤ P(2.0*x[2]**2 + 2.0)
     └───┘└──────────────────────┘
>>> from qiskit.circuit.library import TwoLocal
>>> ry = TwoLocal(3, "ry", "cz", reps=1).decompose()
>>> classifier = z_feature_map(3, reps=1) + ry
>>> print(classifier)
     ┌───┐┌─────────────┐┌──────────┐      ┌──────────┐
q_0: ┤ H ├┤ P(2.0*x[0]) ├┤ RY(θ[0]) ├─■──■─┤ RY(θ[3]) ├────────────
     ├───┤├─────────────┤├──────────┤ │  │ └──────────┘┌──────────┐
q_1: ┤ H ├┤ P(2.0*x[1]) ├┤ RY(θ[1]) ├─■──┼──────■──────┤ RY(θ[4])
     ├───┤├─────────────┤├──────────┤    │      │      ├──────────┤
q_2: ┤ H ├┤ P(2.0*x[2]) ├┤ RY(θ[2]) ├────■──────■──────┤ RY(θ[5])
     └───┘└─────────────┘└──────────┘                  └──────────┘

Parameters

Return type

QuantumCircuit

Was this page helpful?
Report a bug or request content on GitHub.