Skip to main contentIBM Quantum Documentation
This page is from the dev version of Qiskit SDK. Go to the stable version.

MCXGate

class qiskit.circuit.library.MCXGate(num_ctrl_qubits=None, label=None, ctrl_state=None, *, duration=None, unit='dt', _base_label=None)

GitHub

Bases: ControlledGate

The general, multi-controlled X gate.

Can be applied to a QuantumCircuit with the mcx() method.

Create new MCX gate.


Attributes

base_class

Get the base class of this instruction. This is guaranteed to be in the inheritance tree of self.

The “base class” of an instruction is the lowest class in its inheritance tree that the object should be considered entirely compatible with for _all_ circuit applications. This typically means that the subclass is defined purely to offer some sort of programmer convenience over the base class, and the base class is the “true” class for a behavioral perspective. In particular, you should not override base_class if you are defining a custom version of an instruction that will be implemented differently by hardware, such as an alternative measurement strategy, or a version of a parametrized gate with a particular set of parameters for the purposes of distinguishing it in a Target from the full parametrized gate.

This is often exactly equivalent to type(obj), except in the case of singleton instances of standard-library instructions. These singleton instances are special subclasses of their base class, and this property will return that base. For example:

>>> isinstance(XGate(), XGate)
True
>>> type(XGate()) is XGate
False
>>> XGate().base_class is XGate
True

In general, you should not rely on the precise class of an instruction; within a given circuit, it is expected that Instruction.name should be a more suitable discriminator in most situations.

condition

The classical condition on the instruction.

condition_bits

Get Clbits in condition.

ctrl_state

Return the control state of the gate as a decimal integer.

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates. If the gate has open controls, as determined from ctrl_state, the returned definition is conjugated with X without changing the internal _definition.

duration

Get the duration.

label

Return instruction label

mutable

Is this instance is a mutable unique instance or not.

If this attribute is False the gate instance is a shared singleton and is not mutable.

name

Get name of gate. If the gate has open controls the gate name will become:

<original_name_o<ctrl_state>

where <original_name> is the gate name for the default case of closed control qubits and <ctrl_state> is the integer value of the control state for the gate.

num_ancilla_qubits

The number of ancilla qubits.

num_clbits

Return the number of clbits.

num_ctrl_qubits

Get number of control qubits.

Returns

The number of control qubits for the gate.

Return type

int

num_qubits

Return the number of qubits.

params

Get parameters from base_gate.

Returns

List of gate parameters.

Return type

list

Raises

CircuitError – Controlled gate does not define a base gate

unit

Get the time unit of duration.


Methods

control

control(num_ctrl_qubits=1, label=None, ctrl_state=None, annotated=False)

GitHub

Return a multi-controlled-X gate with more control lines.

Parameters

  • num_ctrl_qubits (int) – number of control qubits.
  • label (str | None) – An optional label for the gate [Default: None]
  • ctrl_state (str |int | None) – control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s.
  • annotated (bool) – indicates whether the controlled gate should be implemented as an annotated gate.

Returns

controlled version of this gate.

Return type

ControlledGate

get_num_ancilla_qubits

static get_num_ancilla_qubits(num_ctrl_qubits, mode='noancilla')

GitHub

Get the number of required ancilla qubits without instantiating the class.

This staticmethod might be necessary to check the number of ancillas before creating the gate, or to use the number of ancillas in the initialization.

Deprecated since version 1.3_pending

The method qiskit.circuit.library.standard_gates.x.MCXGate.get_num_ancilla_qubits() is pending deprecation as of qiskit 1.3. It will be marked deprecated in a future release, and then removed no earlier than 3 months after the release date. For an MCXGate it is no longer possible to know the number of ancilla qubits that would be eventually used by the transpiler when the gate is created. Instead, it is recommended to use MCXGate and let HighLevelSynthesis choose the best synthesis method depending on the number of ancilla qubits available. However, if a specific synthesis method using a specific number of ancilla qubits is require, one can create a custom gate by calling the corresponding synthesis function directly.

Return type

int

inverse

inverse(annotated=False)

GitHub

Invert this gate. The MCX is its own inverse.

Parameters

annotated (bool) – when set to True, this is typically used to return an AnnotatedOperation with an inverse modifier set instead of a concrete Gate. However, for this class this argument is ignored as this gate is self-inverse.

Returns

inverse gate (self-inverse).

Return type

MCXGate

Was this page helpful?
Report a bug or request content on GitHub.