Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK Go to the latest version
Important

IBM Quantum Platform is moving and this version will be sunset on July 1. To get started on the new platform, read the migration guide.

qiskit.circuit.library.z_feature_map

qiskit.circuit.library.z_feature_map(feature_dimension, reps=2, entanglement='full', alpha=2.0, data_map_func=None, parameter_prefix='x', insert_barriers=False, name='ZFeatureMap')

GitHub

The first order Pauli Z-evolution circuit.

On 3 qubits and with 2 repetitions the circuit is represented by:

┌───┐┌─────────────┐┌───┐┌─────────────┐
┤ H ├┤ P(2.0*x[0]) ├┤ H ├┤ P(2.0*x[0]) ├
├───┤├─────────────┤├───┤├─────────────┤
┤ H ├┤ U(2.0*x[1]) ├┤ H ├┤ P(2.0*x[1]) ├
├───┤├─────────────┤├───┤├─────────────┤
┤ H ├┤ P(2.0*x[2]) ├┤ H ├┤ P(2.0*x[2]) ├
└───┘└─────────────┘└───┘└─────────────┘

This is a sub-class of PauliFeatureMap where the Pauli strings are fixed as [‘Z’]. As a result the first order expansion will be a circuit without entangling gates.

Examples

>>> prep = z_feature_map(3, reps=3, insert_barriers=True)
>>> print(prep)
     ┌───┐ ░ ┌─────────────┐ ░ ┌───┐ ░ ┌─────────────┐ ░ ┌───┐ ░ ┌─────────────┐
q_0: ┤ H ├─░─┤ P(2.0*x[0]) ├─░─┤ H ├─░─┤ P(2.0*x[0]) ├─░─┤ H ├─░─┤ P(2.0*x[0])
     ├───┤ ░ ├─────────────┤ ░ ├───┤ ░ ├─────────────┤ ░ ├───┤ ░ ├─────────────┤
q_1: ┤ H ├─░─┤ P(2.0*x[1]) ├─░─┤ H ├─░─┤ P(2.0*x[1]) ├─░─┤ H ├─░─┤ P(2.0*x[1])
     ├───┤ ░ ├─────────────┤ ░ ├───┤ ░ ├─────────────┤ ░ ├───┤ ░ ├─────────────┤
q_2: ┤ H ├─░─┤ P(2.0*x[2]) ├─░─┤ H ├─░─┤ P(2.0*x[2]) ├─░─┤ H ├─░─┤ P(2.0*x[2])
     └───┘ ░ └─────────────┘ ░ └───┘ ░ └─────────────┘ ░ └───┘ ░ └─────────────┘
>>> data_map = lambda x: x[0]*x[0] + 1  # note: input is an array
>>> prep = z_feature_map(3, reps=1, data_map_func=data_map)
>>> print(prep)
     ┌───┐┌──────────────────────┐
q_0: ┤ H ├┤ P(2.0*x[0]**2 + 2.0)
     ├───┤├──────────────────────┤
q_1: ┤ H ├┤ P(2.0*x[1]**2 + 2.0)
     ├───┤├──────────────────────┤
q_2: ┤ H ├┤ P(2.0*x[2]**2 + 2.0)
     └───┘└──────────────────────┘
>>> from qiskit.circuit.library import TwoLocal
>>> ry = TwoLocal(3, "ry", "cz", reps=1).decompose()
>>> classifier = z_feature_map(3, reps=1) + ry
>>> print(classifier)
     ┌───┐┌─────────────┐┌──────────┐      ┌──────────┐
q_0: ┤ H ├┤ P(2.0*x[0]) ├┤ RY(θ[0]) ├─■──■─┤ RY(θ[3]) ├────────────
     ├───┤├─────────────┤├──────────┤ │  │ └──────────┘┌──────────┐
q_1: ┤ H ├┤ P(2.0*x[1]) ├┤ RY(θ[1]) ├─■──┼──────■──────┤ RY(θ[4])
     ├───┤├─────────────┤├──────────┤    │      │      ├──────────┤
q_2: ┤ H ├┤ P(2.0*x[2]) ├┤ RY(θ[2]) ├────■──────■──────┤ RY(θ[5])
     └───┘└─────────────┘└──────────┘                  └──────────┘

Parameters

Return type

QuantumCircuit

Was this page helpful?
Report a bug or request content on GitHub.