PauliList
class qiskit.quantum_info.PauliList(data)
Bases: BasePauli
, LinearMixin
, GroupMixin
List of N-qubit Pauli operators.
This class is an efficient representation of a list of Pauli
operators. It supports 1D numpy array indexing returning a Pauli
for integer indexes or a PauliList
for slice or list indices.
Initialization
A PauliList object can be initialized in several ways.
PauliList(list[str])
where strings are same representation with
Pauli
.
PauliList(Pauli) and PauliList(list[Pauli])
where Pauli is
Pauli
.
PauliList.from_symplectic(z, x, phase)
where
z
andx
are 2 dimensional booleannumpy.ndarrays
andphase
is an integer in[0, 1, 2, 3]
.
For example,
import numpy as np
from qiskit.quantum_info import Pauli, PauliList
# 1. init from list[str]
pauli_list = PauliList(["II", "+ZI", "-iYY"])
print("1. ", pauli_list)
pauli1 = Pauli("iXI")
pauli2 = Pauli("iZZ")
# 2. init from Pauli
print("2. ", PauliList(pauli1))
# 3. init from list[Pauli]
print("3. ", PauliList([pauli1, pauli2]))
# 4. init from np.ndarray
z = np.array([[True, True], [False, False]])
x = np.array([[False, True], [True, False]])
phase = np.array([0, 1])
pauli_list = PauliList.from_symplectic(z, x, phase)
print("4. ", pauli_list)
1. ['II', 'ZI', '-iYY']
2. ['iXI']
3. ['iXI', 'iZZ']
4. ['YZ', '-iIX']
Data Access
The individual Paulis can be accessed and updated using the []
operator which accepts integer, lists, or slices for selecting subsets of PauliList. If integer is given, it returns Pauli not PauliList.
pauli_list = PauliList(["XX", "ZZ", "IZ"])
print("Integer: ", repr(pauli_list[1]))
print("List: ", repr(pauli_list[[0, 2]]))
print("Slice: ", repr(pauli_list[0:2]))
Integer: Pauli('ZZ')
List: PauliList(['XX', 'IZ'])
Slice: PauliList(['XX', 'ZZ'])
Iteration
Rows in the Pauli table can be iterated over like a list. Iteration can also be done using the label or matrix representation of each row using the label_iter()
and matrix_iter()
methods.
Initialize the PauliList.
Parameters
data (Pauli orlist) – input data for Paulis. If input is a list each item in the list must be a Pauli object or Pauli str.
Raises
QiskitError – if input array is invalid shape.
Additional Information:
The input array is not copied so multiple Pauli tables can share the same underlying array.
Attributes
dim
Return tuple (input_shape, output_shape).
num_qubits
Return the number of qubits if a N-qubit operator or None otherwise.
phase
Return the phase exponent of the PauliList.
qargs
Return the qargs for the operator.
settings
Return settings.
shape
The full shape of the array()
size
The number of Pauli rows in the table.
x
The x array for the symplectic representation.
z
The z array for the symplectic representation.
Methods
adjoint
anticommutes
anticommutes(other, qargs=None)
Return True
if other Pauli that anticommutes with other.
Parameters
- other (PauliList) – another PauliList operator.
- qargs (list) – qubits to apply dot product on (default:
None
).
Returns
True
if Paulis anticommute, False
if they commute.
Return type
anticommutes_with_all
anticommutes_with_all(other)
Return indexes of rows that commute other.
If other
is a multi-row Pauli list the returned vector indexes rows of the current PauliList that anti-commute with all Paulis in other. If no rows satisfy the condition the returned array will be empty.
Parameters
other (PauliList) – a single Pauli or multi-row PauliList.
Returns
index array of the anti-commuting rows.
Return type
array
argsort
argsort(weight=False, phase=False)
Return indices for sorting the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Paulis of a given weight are still ordered lexicographically.
Parameters
- weight (bool) – Optionally sort by weight if
True
(Default:False
). - phase (bool) – Optionally sort by phase before weight or order (Default:
False
).
Returns
the indices for sorting the table.
Return type
array
commutes
commutes(other, qargs=None)
Return True for each Pauli that commutes with other.
Parameters
- other (PauliList) – another PauliList operator.
- qargs (list) – qubits to apply dot product on (default:
None
).
Returns
True
if Paulis commute, False
if they anti-commute.
Return type
commutes_with_all
commutes_with_all(other)
Return indexes of rows that commute other
.
If other
is a multi-row Pauli list the returned vector indexes rows of the current PauliList that commute with all Paulis in other. If no rows satisfy the condition the returned array will be empty.
Parameters
other (PauliList) – a single Pauli or multi-row PauliList.
Returns
index array of the commuting rows.
Return type
array
compose
compose(other, qargs=None, front=False, inplace=False)
Return the composition self∘other for each Pauli in the list.
Parameters
- other (PauliList) – another PauliList.
- qargs (None or list) – qubits to apply dot product on (Default:
None
). - front (bool) – If True use dot composition method [default:
False
]. - inplace (bool) – If
True
update in-place (default:False
).
Returns
the list of composed Paulis.
Return type
Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list, or has the wrong number of qubits for the specified qargs
.
conjugate
copy
delete
delete(ind, qubit=False)
Return a copy with Pauli rows deleted from table.
When deleting qubits the qubit index is the same as the column index of the underlying X
and Z
arrays.
Parameters
- ind (int orlist) – index(es) to delete.
- qubit (bool) – if
True
delete qubit columns, otherwise delete Pauli rows (Default:False
).
Returns
the resulting table with the entries removed.
Return type
Raises
QiskitError – if ind
is out of bounds for the array size or number of qubits.
dot
dot(other, qargs=None, inplace=False)
Return the composition other∘self for each Pauli in the list.
Parameters
- other (PauliList) – another PauliList.
- qargs (None or list) – qubits to apply dot product on (Default:
None
). - inplace (bool) – If True update in-place (default:
False
).
Returns
the list of composed Paulis.
Return type
Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list, or has the wrong number of qubits for the specified qargs
.
equiv
equiv(other)
Entrywise comparison of Pauli equivalence up to global phase.
Parameters
other (PauliList orPauli) – a comparison object.
Returns
An array of True
or False
for entrywise equivalence
of the current table.
Return type
np.ndarray
evolve
evolve(other, qargs=None, frame='h')
Performs either Heisenberg (default) or Schrödinger picture evolution of the Pauli by a Clifford and returns the evolved Pauli.
Schrödinger picture evolution can be chosen by passing parameter frame='s'
. This option yields a faster calculation.
Heisenberg picture evolves the Pauli as .
Schrödinger picture evolves the Pauli as .
Parameters
- other (Pauli orClifford orQuantumCircuit) – The Clifford operator to evolve by.
- qargs (list) – a list of qubits to apply the Clifford to.
- frame (string) –
'h'
for Heisenberg (default) or's'
for Schrödinger framework.
Returns
the Pauli (Heisenberg picture) or the Pauli (Schrödinger picture).
Return type
Raises
QiskitError – if the Clifford number of qubits and qargs don’t match.
expand
expand(other)
Return the expand product of each Pauli in the list.
Parameters
other (PauliList) – another PauliList.
Returns
the list of tensor product Paulis.
Return type
Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list.
from_symplectic
classmethod from_symplectic(z, x, phase=0)
Construct a PauliList from a symplectic data.
Parameters
- z (np.ndarray) – 2D boolean Numpy array.
- x (np.ndarray) – 2D boolean Numpy array.
- phase (np.ndarray or None) – Optional, 1D integer array from Z_4.
Returns
the constructed PauliList.
Return type
group_commuting
group_commuting(qubit_wise=False)
Partition a PauliList into sets of commuting Pauli strings.
Parameters
qubit_wise (bool) –
whether the commutation rule is applied to the whole operator, or on a per-qubit basis. For example:
>>> from qiskit.quantum_info import PauliList
>>> op = PauliList(["XX", "YY", "IZ", "ZZ"])
>>> op.group_commuting()
[PauliList(['XX', 'YY']), PauliList(['IZ', 'ZZ'])]
>>> op.group_commuting(qubit_wise=True)
[PauliList(['XX']), PauliList(['YY']), PauliList(['IZ', 'ZZ'])]
Returns
List of PauliLists where each PauliList contains commuting Pauli operators.
Return type
group_qubit_wise_commuting
group_qubit_wise_commuting()
Partition a PauliList into sets of mutually qubit-wise commuting Pauli strings.
Returns
List of PauliLists where each PauliList contains commutable Pauli operators.
Return type
input_dims
insert
insert(ind, value, qubit=False)
Insert Paulis into the table.
When inserting qubits the qubit index is the same as the column index of the underlying X
and Z
arrays.
Parameters
- ind (int) – index to insert at.
- value (PauliList) – values to insert.
- qubit (bool) – if
True
insert qubit columns, otherwise insert Pauli rows (Default:False
).
Returns
the resulting table with the entries inserted.
Return type
Raises
QiskitError – if the insertion index is invalid.
inverse
label_iter
label_iter()
Return a label representation iterator.
This is a lazy iterator that converts each row into the string label only as it is used. To convert the entire table to labels use the to_labels()
method.
Returns
label iterator object for the PauliList.
Return type
LabelIterator
matrix_iter
matrix_iter(sparse=False)
Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used. To convert the entire table to matrices use the to_matrix()
method.
Parameters
sparse (bool) – optionally return sparse CSR matrices if True
, otherwise return Numpy array matrices (Default: False
)
Returns
matrix iterator object for the PauliList.
Return type
MatrixIterator
noncommutation_graph
noncommutation_graph(qubit_wise)
Create the non-commutation graph of this PauliList.
This transforms the measurement operator grouping problem into graph coloring problem. The constructed graph contains one node for each Pauli. The nodes will be connecting for any two Pauli terms that do _not_ commute.
Parameters
qubit_wise (bool) – whether the commutation rule is applied to the whole operator, or on a per-qubit basis.
Returns
the non-commutation graph with nodes for each Pauli and edges
indicating a non-commutation relation. Each node will hold the index of the Pauli term it corresponds to in its data. The edges of the graph hold no data.
Return type
output_dims
power
power(n)
Return the compose of a operator with itself n times.
Parameters
n (int) – the number of times to compose with self (n>0).
Returns
the n-times composed operator.
Return type
Raises
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
reshape
reshape(input_dims=None, output_dims=None, num_qubits=None)
Return a shallow copy with reshaped input and output subsystem dimensions.
Parameters
- input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
- output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
- num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
Returns
returns self with reshaped input and output dimensions.
Return type
BaseOperator
Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
sort
sort(weight=False, phase=False)
Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Paulis of a given weight are still ordered lexicographically.
Example
Consider sorting all a random ordering of all 2-qubit Paulis
from numpy.random import shuffle
from qiskit.quantum_info.operators import PauliList
# 2-qubit labels
labels = ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ',
'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ']
# Shuffle Labels
shuffle(labels)
pt = PauliList(labels)
print('Initial Ordering')
print(pt)
# Lexicographic Ordering
srt = pt.sort()
print('Lexicographically sorted')
print(srt)
# Weight Ordering
srt = pt.sort(weight=True)
print('Weight sorted')
print(srt)
Initial Ordering
['YX', 'ZZ', 'XZ', 'YI', 'YZ', 'II', 'XX', 'XI', 'XY', 'YY', 'IX', 'IZ',
'ZY', 'ZI', 'ZX', 'IY']
Lexicographically sorted
['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ',
'ZI', 'ZX', 'ZY', 'ZZ']
Weight sorted
['II', 'IX', 'IY', 'IZ', 'XI', 'YI', 'ZI', 'XX', 'XY', 'XZ', 'YX', 'YY',
'YZ', 'ZX', 'ZY', 'ZZ']
Parameters
- weight (bool) – optionally sort by weight if
True
(Default:False
). - phase (bool) – Optionally sort by phase before weight or order (Default:
False
).
Returns
a sorted copy of the original table.
Return type
tensor
tensor(other)
Return the tensor product with each Pauli in the list.
Parameters
other (PauliList) – another PauliList.
Returns
the list of tensor product Paulis.
Return type
Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list.
to_labels
to_labels(array=False)
Convert a PauliList to a list Pauli string labels.
For large PauliLists converting using the array=True
kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance.
Label | Symplectic | Matrix |
---|
| "I"
| | |
| "X"
| | |
| "Y"
| | |
| "Z"
| | |
Parameters
array (bool) – return a Numpy array if True
, otherwise return a list (Default: False
).
Returns
The rows of the PauliList in label form.
Return type
list or array
to_matrix
to_matrix(sparse=False, array=False)
Convert to a list or array of Pauli matrices.
For large PauliLists converting using the array=True
kwarg will be more efficient since it allocates memory a full rank-3 Numpy array of matrices in advance.
Label | Symplectic | Matrix |
---|
| "I"
| | |
| "X"
| | |
| "Y"
| | |
| "Z"
| | |
Parameters
- sparse (bool) – if
True
return sparse CSR matrices, otherwise return dense Numpy arrays (Default:False
). - array (bool) – return as rank-3 numpy array if
True
, otherwise return a list of Numpy arrays (Default:False
).
Returns
A list of dense Pauli matrices if array=False` and ``sparse=False`. list: A list of sparse Pauli matrices if ``array=False
and sparse=True
. array: A dense rank-3 array of Pauli matrices if array=True
.
Return type
transpose
unique
unique(return_index=False, return_counts=False)
Return unique Paulis from the table.
Example
from qiskit.quantum_info.operators import PauliList
pt = PauliList(['X', 'Y', '-X', 'I', 'I', 'Z', 'X', 'iZ'])
unique = pt.unique()
print(unique)
['X', 'Y', '-X', 'I', 'Z', 'iZ']
Parameters
- return_index (bool) – If
True
, also return the indices that result in the unique array. (Default:False
) - return_counts (bool) – If
True
, also return the number of times each unique item appears in the table.
Returns
unique
the table of the unique rows.
unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if return_index
is True
.
unique_counts: np.array, optional
The number of times each of the unique values comes up in the original array. Only provided if return_counts
is True
.
Return type