Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

Circuit Synthesis

qiskit.synthesis


Evolution Synthesis

EvolutionSynthesis()Interface for evolution synthesis algorithms.
ProductFormula(order[, reps, ...])Product formula base class for the decomposition of non-commuting operator exponentials.
LieTrotter([reps, insert_barriers, ...])The Lie-Trotter product formula.
SuzukiTrotter([order, reps, ...])The (higher order) Suzuki-Trotter product formula.
MatrixExponential()Exact operator evolution via matrix exponentiation and unitary synthesis.
QDrift([reps, insert_barriers, ...])The QDrift Trotterization method, which selects each each term in the Trotterization randomly, with a probability proportional to its weight.

Linear Function Synthesis

synth_cnot_count_full_pmh

qiskit.synthesis.synth_cnot_count_full_pmh(state, section_size=2)

GitHub

Synthesize linear reversible circuits for all-to-all architecture using Patel, Markov and Hayes method.

This function is an implementation of the Patel, Markov and Hayes algorithm from [1] for optimal synthesis of linear reversible circuits for all-to-all architecture, as specified by an n x n matrix.

Parameters

  • state (list[list] or ndarray) – n x n boolean invertible matrix, describing the state of the input circuit
  • section_size (int) – the size of each section, used in the Patel–Markov–Hayes algorithm [1]. section_size must be a factor of num_qubits.

Returns

a CX-only circuit implementing the linear transformation.

Return type

QuantumCircuit

Raises

QiskitError – when variable “state” isn’t of type numpy.ndarray

References

  1. Patel, Ketan N., Igor L. Markov, and John P. Hayes, Optimal synthesis of linear reversible circuits, Quantum Information & Computation 8.3 (2008): 282-294. arXiv:quant-ph/0302002 [quant-ph]

synth_cnot_depth_line_kms

qiskit.synthesis.synth_cnot_depth_line_kms(mat)

GitHub

Synthesize linear reversible circuit for linear nearest-neighbor architectures using Kutin, Moulton, Smithline method.

Synthesis algorithm for linear reversible circuits from [1], Chapter 7. Synthesizes any linear reversible circuit of n qubits over linear nearest-neighbor architecture using CX gates with depth at most 5*n.

Parameters

mat (np.ndarray]) – A boolean invertible matrix.

Returns

the synthesized quantum circuit.

Return type

QuantumCircuit

Raises

QiskitError – if mat is not invertible.

References

  1. Kutin, S., Moulton, D. P., Smithline, L., Computation at a distance, Chicago J. Theor. Comput. Sci., vol. 2007, (2007), arXiv:quant-ph/0701194

Linear-Phase Synthesis

synth_cz_depth_line_mr

qiskit.synthesis.synth_cz_depth_line_mr(mat)

GitHub

Synthesis of a CZ circuit for linear nearest neighbour (LNN) connectivity, based on Maslov and Roetteler.

Note that this method reverts the order of qubits in the circuit, and returns a circuit containing CX and phase (S, Sdg or Z) gates.

Parameters

mat (ndarray) – an upper-diagonal matrix representing the CZ circuit. mat[i][j]=1 for i<j represents a CZ(i,j) gate

Returns

a circuit implementation of the CZ circuit of depth 2*n+2 for LNN connectivity.

Return type

QuantumCircuit

Reference:

  1. Dmitri Maslov, Martin Roetteler, Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations, arXiv:1705.09176.

synth_cx_cz_depth_line_my

qiskit.synthesis.synth_cx_cz_depth_line_my(mat_x, mat_z)

GitHub

Joint synthesis of a -CZ-CX- circuit for linear nearest neighbour (LNN) connectivity, with 2-qubit depth at most 5n, based on Maslov and Yang. This method computes the CZ circuit inside the CX circuit via phase gate insertions.

Parameters

  • mat_z (ndarray) – a boolean symmetric matrix representing a CZ circuit. Mz[i][j]=1 represents a CZ(i,j) gate
  • mat_x (ndarray) – a boolean invertible matrix representing a CX circuit.

Returns

a circuit implementation of a CX circuit following a CZ circuit, denoted as a -CZ-CX- circuit,in two-qubit depth at most 5n, for LNN connectivity.

Return type

QuantumCircuit

Reference:

  1. Kutin, S., Moulton, D. P., Smithline, L., Computation at a distance, Chicago J. Theor. Comput. Sci., vol. 2007, (2007), arXiv:quant-ph/0701194
  2. Dmitri Maslov, Willers Yang, CNOT circuits need little help to implement arbitrary Hadamard-free Clifford transformations they generate, arXiv:2210.16195.

synth_cnot_phase_aam

qiskit.synthesis.synth_cnot_phase_aam(cnots, angles, section_size=2)

GitHub

This function is an implementation of the GraySynth algorithm of Amy, Azimadeh and Mosca.

GraySynth is a heuristic algorithm from [1] for synthesizing small parity networks. It is inspired by Gray codes. Given a set of binary strings S (called “cnots” bellow), the algorithm synthesizes a parity network for S by repeatedly choosing an index i to expand and then effectively recursing on the co-factors S_0 and S_1, consisting of the strings y in S, with y_i = 0 or 1 respectively. As a subset S is recursively expanded, CNOT gates are applied so that a designated target bit contains the (partial) parity ksi_y(x) where y_i = 1 if and only if y’_i = 1 for all y’ in S. If S is a singleton {y’}, then y = y’, hence the target bit contains the value ksi_y’(x) as desired.

Notably, rather than uncomputing this sequence of CNOT gates when a subset S is finished being synthesized, the algorithm maintains the invariant that the remaining parities to be computed are expressed over the current state of bits. This allows the algorithm to avoid the ‘backtracking’ inherent in uncomputing-based methods.

The algorithm is described in detail in section 4 of [1].

Parameters

  • cnots (list[list]) –

    a matrix whose columns are the parities to be synthesized e.g.:

    [[0, 1, 1, 1, 1, 1],
     [1, 0, 0, 1, 1, 1],
     [1, 0, 0, 1, 0, 0],
     [0, 0, 1, 0, 1, 0]]

    corresponds to:

    x1^x2 + x0 + x0^x3 + x0^x1^x2 + x0^x1^x3 + x0^x1
  • angles (list) – a list containing all the phase-shift gates which are to be applied, in the same order as in “cnots”. A number is interpreted as the angle of p(angle), otherwise the elements have to be ‘t’, ‘tdg’, ‘s’, ‘sdg’ or ‘z’.

  • section_size (int) – the size of every section, used in _lwr_cnot_synth(), in the Patel–Markov–Hayes algorithm. section_size must be a factor of num_qubits.

Returns

the decomposed quantum circuit.

Return type

QuantumCircuit

Raises

QiskitError – when dimensions of cnots and angles don’t align.

References

  1. Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. On the controlled-NOT complexity of controlled-NOT–phase circuits., Quantum Science and Technology 4.1 (2018): 015002. arXiv:1712.01859

Permutation Synthesis

synth_permutation_depth_lnn_kms

qiskit.synthesis.synth_permutation_depth_lnn_kms(pattern)

GitHub

Synthesize a permutation circuit for a linear nearest-neighbor architecture using the Kutin, Moulton, Smithline method.

This is the permutation synthesis algorithm from https://arxiv.org/abs/quant-ph/0701194, Chapter 6. It synthesizes any permutation of n qubits over linear nearest-neighbor architecture using SWAP gates with depth at most n and size at most n(n-1)/2 (where both depth and size are measured with respect to SWAPs).

Parameters

pattern (Union[list[int], np.ndarray]) – permutation pattern, describing which qubits occupy the positions 0, 1, 2, etc. after applying the permutation. That is, pattern[k] = m when the permutation maps qubit m to position k. As an example, the pattern [2, 4, 3, 0, 1] means that qubit 2 goes to position 0, qubit 4 goes to position 1, etc.

Returns

the synthesized quantum circuit.

Return type

QuantumCircuit

synth_permutation_basic

qiskit.synthesis.synth_permutation_basic(pattern)

GitHub

Synthesize a permutation circuit for a fully-connected architecture using sorting.

More precisely, if the input permutation is a cycle of length m, then this creates a quantum circuit with m-1 SWAPs (and of depth m-1); if the input permutation consists of several disjoint cycles, then each cycle is essentially treated independently.

Parameters

pattern (Union[list[int], np.ndarray]) – permutation pattern, describing which qubits occupy the positions 0, 1, 2, etc. after applying the permutation. That is, pattern[k] = m when the permutation maps qubit m to position k. As an example, the pattern [2, 4, 3, 0, 1] means that qubit 2 goes to position 0, qubit 4 goes to position 1, etc.

Returns

the synthesized quantum circuit.

Return type

QuantumCircuit

synth_permutation_acg

qiskit.synthesis.synth_permutation_acg(pattern)

GitHub

Synthesize a permutation circuit for a fully-connected architecture using the Alon, Chung, Graham method.

This produces a quantum circuit of depth 2 (measured in the number of SWAPs).

This implementation is based on the Theorem 2 in the paper “Routing Permutations on Graphs Via Matchings” (1993), available at https://www.cs.tau.ac.il/~nogaa/PDFS/r.pdf.

Parameters

pattern (Union[list[int], np.ndarray]) – permutation pattern, describing which qubits occupy the positions 0, 1, 2, etc. after applying the permutation. That is, pattern[k] = m when the permutation maps qubit m to position k. As an example, the pattern [2, 4, 3, 0, 1] means that qubit 2 goes to position 0, qubit 4 goes to position 1, etc.

Returns

the synthesized quantum circuit.

Return type

QuantumCircuit


Clifford Synthesis

synth_clifford_full

qiskit.synthesis.synth_clifford_full(clifford, method=None)

GitHub

Decompose a Clifford operator into a QuantumCircuit.

For N <= 3 qubits this is based on optimal CX cost decomposition from reference [1]. For N > 3 qubits this is done using the general non-optimal greedy compilation routine from reference [3], which typically yields better CX cost compared to the AG method in [2].

Parameters

  • clifford (Clifford) – a clifford operator.
  • method (str) – Optional, a synthesis method (‘AG’ or ‘greedy’). If set this overrides optimal decomposition for N <=3 qubits.

Returns

a circuit implementation of the Clifford.

Return type

QuantumCircuit

References

  1. S. Bravyi, D. Maslov, Hadamard-free circuits expose the structure of the Clifford group, arXiv:2003.09412 [quant-ph]
  2. S. Aaronson, D. Gottesman, Improved Simulation of Stabilizer Circuits, Phys. Rev. A 70, 052328 (2004). arXiv:quant-ph/0406196
  3. Sergey Bravyi, Shaohan Hu, Dmitri Maslov, Ruslan Shaydulin, Clifford Circuit Optimization with Templates and Symbolic Pauli Gates, arXiv:2105.02291 [quant-ph]

synth_clifford_ag

qiskit.synthesis.synth_clifford_ag(clifford)

GitHub

Decompose a Clifford operator into a QuantumCircuit based on Aaronson-Gottesman method.

Parameters

clifford (Clifford) – a clifford operator.

Returns

a circuit implementation of the Clifford.

Return type

QuantumCircuit

Reference:

  1. S. Aaronson, D. Gottesman, Improved Simulation of Stabilizer Circuits, Phys. Rev. A 70, 052328 (2004). arXiv:quant-ph/0406196

synth_clifford_bm

qiskit.synthesis.synth_clifford_bm(clifford)

GitHub

Optimal CX-cost decomposition of a Clifford operator on 2-qubits or 3-qubits into a QuantumCircuit based on Bravyi-Maslov method.

Parameters

clifford (Clifford) – a clifford operator.

Returns

a circuit implementation of the Clifford.

Return type

QuantumCircuit

Raises

QiskitError – if clifford is on more than 3 qubits.

Reference:

  1. S. Bravyi, D. Maslov, Hadamard-free circuits expose the structure of the Clifford group, arXiv:2003.09412 [quant-ph]

synth_clifford_greedy

qiskit.synthesis.synth_clifford_greedy(clifford)

GitHub

Decompose a Clifford operator into a QuantumCircuit based on the greedy Clifford compiler that is described in Appendix A of Bravyi, Hu, Maslov and Shaydulin.

This method typically yields better CX cost compared to the Aaronson-Gottesman method.

Parameters

clifford (Clifford) – a clifford operator.

Returns

a circuit implementation of the Clifford.

Return type

QuantumCircuit

Raises

QiskitError – if symplectic Gaussian elimination fails.

Reference:

  1. Sergey Bravyi, Shaohan Hu, Dmitri Maslov, Ruslan Shaydulin, Clifford Circuit Optimization with Templates and Symbolic Pauli Gates, arXiv:2105.02291 [quant-ph]

synth_clifford_layers

qiskit.synthesis.synth_clifford_layers(cliff, cx_synth_func=<function _default_cx_synth_func>, cz_synth_func=<function _default_cz_synth_func>, cx_cz_synth_func=None, cz_func_reverse_qubits=False, validate=False)

GitHub

Synthesis of a Clifford into layers, it provides a similar decomposition to the synthesis described in Lemma 8 of Bravyi and Maslov.

For example, a 5-qubit Clifford circuit is decomposed into the following layers:

     ┌─────┐┌─────┐┌────────┐┌─────┐┌─────┐┌─────┐┌─────┐┌────────┐
q_0:0    ├┤0    ├┤0       ├┤0    ├┤0    ├┤0    ├┤0    ├┤0
     │     ││     ││        ││     ││     ││     ││     ││        │
q_1:1    ├┤1    ├┤1       ├┤1    ├┤1    ├┤1    ├┤1    ├┤1
     │     ││     ││        ││     ││     ││     ││     ││        │
q_2:2 S2 ├┤2 CZ ├┤2 CX_dg ├┤2 H2 ├┤2 S1 ├┤2 CZ ├┤2 H1 ├┤2 Pauli ├
     │     ││     ││        ││     ││     ││     ││     ││        │
q_3:3    ├┤3    ├┤3       ├┤3    ├┤3    ├┤3    ├┤3    ├┤3
     │     ││     ││        ││     ││     ││     ││     ││        │
q_4:4    ├┤4    ├┤4       ├┤4    ├┤4    ├┤4    ├┤4    ├┤4
     └─────┘└─────┘└────────┘└─────┘└─────┘└─────┘└─────┘└────────┘

This decomposition is for the default cz_synth_func and cx_synth_func functions, with other functions one may see slightly different decomposition.

Parameters

  • cliff (Clifford) – a clifford operator.
  • cx_synth_func (Callable) – a function to decompose the CX sub-circuit. It gets as input a boolean invertible matrix, and outputs a QuantumCircuit.
  • cz_synth_func (Callable) – a function to decompose the CZ sub-circuit. It gets as input a boolean symmetric matrix, and outputs a QuantumCircuit.
  • cx_cz_synth_func (Callable) – optional, a function to decompose both sub-circuits CZ and CX.
  • validate (Boolean) – if True, validates the synthesis process.
  • cz_func_reverse_qubits (Boolean) – True only if cz_synth_func is synth_cz_depth_line_mr, since this function returns a circuit that reverts the order of qubits.

Returns

a circuit implementation of the Clifford.

Return type

QuantumCircuit

Reference:

  1. S. Bravyi, D. Maslov, Hadamard-free circuits expose the structure of the Clifford group, arXiv:2003.09412 [quant-ph]

synth_clifford_depth_lnn

qiskit.synthesis.synth_clifford_depth_lnn(cliff)

GitHub

Synthesis of a Clifford into layers for linear-nearest neighbour connectivity.

The depth of the synthesized n-qubit circuit is bounded by 7*n+2, which is not optimal. It should be replaced by a better algorithm that provides depth bounded by 7*n-4 [3].

Parameters

cliff (Clifford) – a clifford operator.

Returns

a circuit implementation of the Clifford.

Return type

QuantumCircuit

Reference:

  1. S. Bravyi, D. Maslov, Hadamard-free circuits expose the structure of the Clifford group, arXiv:2003.09412 [quant-ph]
  2. Dmitri Maslov, Martin Roetteler, Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations, arXiv:1705.09176.
  3. Dmitri Maslov, Willers Yang, CNOT circuits need little help to implement arbitrary Hadamard-free Clifford transformations they generate, arXiv:2210.16195.

CNOTDihedral Synthesis

synth_cnotdihedral_full

qiskit.synthesis.synth_cnotdihedral_full(elem)

GitHub

Decompose a CNOTDihedral element into a QuantumCircuit. For N <= 2 qubits this is based on optimal CX cost decomposition from reference [1]. For N > 2 qubits this is done using the general non-optimal compilation routine from reference [2].

Parameters

elem (CNOTDihedral) – a CNOTDihedral element.

Returns

a circuit implementation of the CNOTDihedral element.

Return type

QuantumCircuit

References

  1. Shelly Garion and Andrew W. Cross, Synthesis of CNOT-Dihedral circuits with optimal number of two qubit gates, Quantum 4(369), 2020
  2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, Scalable randomised benchmarking of non-Clifford gates, npj Quantum Inf 2, 16012 (2016).

synth_cnotdihedral_two_qubits

qiskit.synthesis.synth_cnotdihedral_two_qubits(elem)

GitHub

Decompose a CNOTDihedral element on a single qubit and two qubits into a QuantumCircuit. This decomposition has an optimal number of CX gates.

Parameters

elem (CNOTDihedral) – a CNOTDihedral element.

Returns

a circuit implementation of the CNOTDihedral element.

Return type

QuantumCircuit

Raises

QiskitError – if the element in not 1-qubit or 2-qubit CNOTDihedral.

Reference:

  1. Shelly Garion and Andrew W. Cross, On the structure of the CNOT-Dihedral group, arXiv:2006.12042 [quant-ph]

synth_cnotdihedral_general

qiskit.synthesis.synth_cnotdihedral_general(elem)

GitHub

Decompose a CNOTDihedral element into a QuantumCircuit.

Decompose a general CNOTDihedral elements. The number of CNOT gates is not necessarily optimal. For a decomposition of a 1-qubit or 2-qubit element, call synth_cnotdihedral_two_qubits.

Parameters

elem (CNOTDihedral) – a CNOTDihedral element.

Returns

a circuit implementation of the CNOTDihedral element.

Return type

QuantumCircuit

Raises

QiskitError – if the element could not be decomposed into a circuit.

Reference:

  1. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, Scalable randomised benchmarking of non-Clifford gates, npj Quantum Inf 2, 16012 (2016).

Stabilizer State Synthesis

synth_stabilizer_layers

qiskit.synthesis.synth_stabilizer_layers(stab, cz_synth_func=<function _default_cz_synth_func>, cz_func_reverse_qubits=False, validate=False)

GitHub

Synthesis of a stabilizer state into layers.

It provides a similar decomposition to the synthesis described in Lemma 8 of Bravyi and Maslov, without the initial Hadamard-free sub-circuit which do not affect the stabilizer state.

For example, a 5-qubit stabilizer state is decomposed into the following layers:

     ┌─────┐┌─────┐┌─────┐┌─────┐┌────────┐
q_0:0    ├┤0    ├┤0    ├┤0    ├┤0
     │     ││     ││     ││     ││        │
q_1:1    ├┤1    ├┤1    ├┤1    ├┤1
     │     ││     ││     ││     ││        │
q_2:2 H2 ├┤2 S1 ├┤2 CZ ├┤2 H1 ├┤2 Pauli ├
     │     ││     ││     ││     ││        │
q_3:3    ├┤3    ├┤3    ├┤3    ├┤3
     │     ││     ││     ││     ││        │
q_4:4    ├┤4    ├┤4    ├┤4    ├┤4
     └─────┘└─────┘└─────┘└─────┘└────────┘

Parameters

  • stab (StabilizerState) – a stabilizer state.
  • cz_synth_func (Callable) – a function to decompose the CZ sub-circuit. It gets as input a boolean symmetric matrix, and outputs a QuantumCircuit.
  • validate (Boolean) – if True, validates the synthesis process.
  • cz_func_reverse_qubits (Boolean) – True only if cz_synth_func is synth_cz_depth_line_mr, since this function returns a circuit that reverts the order of qubits.

Returns

a circuit implementation of the stabilizer state.

Return type

QuantumCircuit

Raises

QiskitError – if the input is not a StabilizerState.

Reference:

  1. S. Bravyi, D. Maslov, Hadamard-free circuits expose the structure of the Clifford group, arXiv:2003.09412 [quant-ph]

synth_stabilizer_depth_lnn

qiskit.synthesis.synth_stabilizer_depth_lnn(stab)

GitHub

Synthesis of an n-qubit stabilizer state for linear-nearest neighbour connectivity, in 2-qubit depth 2*n+2 and two distinct CX layers, using CX and phase gates (S, Sdg or Z).

Parameters

stab (StabilizerState) – a stabilizer state.

Returns

a circuit implementation of the stabilizer state.

Return type

QuantumCircuit

Reference:

  1. S. Bravyi, D. Maslov, Hadamard-free circuits expose the structure of the Clifford group, arXiv:2003.09412 [quant-ph]
  2. Dmitri Maslov, Martin Roetteler, Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations, arXiv:1705.09176.

Discrete Basis Synthesis

SolovayKitaevDecomposition([...])The Solovay Kitaev discrete decomposition algorithm.

generate_basic_approximations

qiskit.synthesis.generate_basic_approximations(basis_gates, depth, filename=None)

GitHub

Generates a list of GateSequence``s with the gates in ``basic_gates.

Parameters

  • basis_gates (list[str |Gate]) – The gates from which to create the sequences of gates.
  • depth (int) – The maximum depth of the approximations.
  • filename (str | None) – If provided, the basic approximations are stored in this file.

Returns

List of GateSequences using the gates in basic_gates.

Raises

ValueError – If basis_gates contains an invalid gate identifier.

Return type

list[GateSequence]


Unitary Synthesis

Decomposition of general 2n×2n2^n \times 2^n unitary matrices for any number of qubits.

qs_decomposition

qiskit.synthesis.qs_decomposition(mat, opt_a1=True, opt_a2=True, decomposer_1q=None, decomposer_2q=None, *, _depth=0)

GitHub

Decomposes a unitary matrix into one and two qubit gates using Quantum Shannon Decomposition,

This decomposition is described in Shende et al. [1].

  ┌───┐               ┌───┐     ┌───┐     ┌───┐
 ─┤   ├─       ───────┤ Rz├─────┤ Ry├─────┤ Rz├─────
  │   │    ≃     ┌───┐└─┬─┘┌───┐└─┬─┘┌───┐└─┬─┘┌───┐
/─┤   ├─       /─┤   ├──□──┤   ├──□──┤   ├──□──┤   ├
  └───┘          └───┘     └───┘     └───┘     └───┘

The number of CX gates generated with the decomposition without optimizations is,

9164n322n\frac{9}{16} 4^n - \frac{3}{2} 2^n

If opt_a1 = True, the default, the CX count is reduced by,

134n21.\frac{1}{3} 4^{n - 2} - 1.

If opt_a2 = True, the default, the CX count is reduced by,

4n21.4^{n-2} - 1.

Parameters

  • mat (np.ndarray) – unitary matrix to decompose
  • opt_a1 (bool) – whether to try optimization A.1 from Shende et al. [1]. This should eliminate 1 cx per call. If True CZ gates are left in the output. If desired these can be further decomposed to CX.
  • opt_a2 (bool) – whether to try optimization A.2 from Shende et al. [1]. This decomposes two qubit unitaries into a diagonal gate and a two cx unitary and reduces overall cx count by 4n214^{n-2} - 1.
  • decomposer_1q (Callable[[np.ndarray], QuantumCircuit] | None) – optional 1Q decomposer. If None, uses OneQubitEulerDecomposer.
  • decomposer_2q (Callable[[np.ndarray], QuantumCircuit] | None) – optional 2Q decomposer. If None, uses TwoQubitBasisDecomposer.

Returns

Decomposed quantum circuit.

Return type

QuantumCircuit

Reference:

  1. Shende, Bullock, Markov, Synthesis of Quantum Logic Circuits, arXiv:0406176 [quant-ph]

The Approximate Quantum Compiler is available here: qiskit.synthesis.unitary.aqc


One-Qubit Synthesis

OneQubitEulerDecomposer([basis, use_dag])A class for decomposing 1-qubit unitaries into Euler angle rotations.

Two-Qubit Synthesis

TwoQubitBasisDecomposer(gate[, ...])A class for decomposing 2-qubit unitaries into minimal number of uses of a 2-qubit basis gate.
XXDecomposer([basis_fidelity, euler_basis, ...])A class for optimal decomposition of 2-qubit unitaries into 2-qubit basis gates of XX type (i.e., each locally equivalent to CAN(alpha, 0, 0) for a possibly varying alpha).
Was this page helpful?
Report a bug or request content on GitHub.