Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version.

BasicSimulator

class qiskit.providers.basic_provider.BasicSimulator(provider=None, target=None, **fields)

GitHub

Bases: BackendV2

Python implementation of a basic (non-efficient) quantum simulator.

Parameters

  • provider (Provider | None) – An optional backwards reference to the Provider object that the backend is from.
  • target (Target | None) – An optional target to configure the simulator.
  • fields – kwargs for the values to use to override the default options.

Raises

AttributeError – If a field is specified that’s outside the backend’s options.


Attributes

MAX_QUBITS_MEMORY

Default value: 24

coupling_map

Return the CouplingMap object

dt

Return the system time resolution of input signals

This is required to be implemented if the backend supports Pulse scheduling.

Returns

The input signal timestep in seconds. If the backend doesn’t define dt, None will be returned.

dtm

Return the system time resolution of output signals

Returns

The output signal timestep in seconds.

Raises

NotImplementedError – if the backend doesn’t support querying the output signal timestep

instruction_durations

Return the InstructionDurations object.

instruction_schedule_map

Return the InstructionScheduleMap for the instructions defined in this backend’s target.

instructions

A list of Instruction tuples on the backend of the form (instruction, (qubits)

max_circuits

meas_map

Return the grouping of measurements which are multiplexed

This is required to be implemented if the backend supports Pulse scheduling.

Returns

The grouping of measurements which are multiplexed

Raises

NotImplementedError – if the backend doesn’t support querying the measurement mapping

num_qubits

Return the number of qubits the backend has.

operation_names

A list of instruction names that the backend supports.

operations

A list of Instruction instances that the backend supports.

options

Return the options for the backend

The options of a backend are the dynamic parameters defining how the backend is used. These are used to control the run() method.

provider

Return the backend Provider.

Returns

the Provider responsible for the backend.

Return type

Provider

target

version

Default value: 2

name

Name of the backend.

description

Optional human-readable description.

online_date

Date that the backend came online.

backend_version

Version of the backend being provided. This is not the same as BackendV2.version, which is the version of the Backend abstract interface.


Methods

acquire_channel

acquire_channel(qubit)

Return the acquisition channel for the given qubit.

This is required to be implemented if the backend supports Pulse scheduling.

Returns

The Qubit measurement acquisition line.

Return type

AcquireChannel

Raises

NotImplementedError – if the backend doesn’t support querying the measurement mapping

configuration

configuration()

Return the simulator backend configuration.

Returns

The configuration for the backend.

Return type

BackendConfiguration

control_channel

control_channel(qubits)

Return the secondary drive channel for the given qubit

This is typically utilized for controlling multiqubit interactions. This channel is derived from other channels.

This is required to be implemented if the backend supports Pulse scheduling.

Parameters

qubits (Iterable[int]) – Tuple or list of qubits of the form (control_qubit, target_qubit).

Returns

The multi qubit control line.

Return type

List[ControlChannel]

Raises

NotImplementedError – if the backend doesn’t support querying the measurement mapping

drive_channel

drive_channel(qubit)

Return the drive channel for the given qubit.

This is required to be implemented if the backend supports Pulse scheduling.

Returns

The Qubit drive channel

Return type

DriveChannel

Raises

NotImplementedError – if the backend doesn’t support querying the measurement mapping

measure_channel

measure_channel(qubit)

Return the measure stimulus channel for the given qubit.

This is required to be implemented if the backend supports Pulse scheduling.

Returns

The Qubit measurement stimulus line

Return type

MeasureChannel

Raises

NotImplementedError – if the backend doesn’t support querying the measurement mapping

qubit_properties

qubit_properties(qubit)

Return QubitProperties for a given qubit.

If there are no defined or the backend doesn’t support querying these details this method does not need to be implemented.

Parameters

qubit (int |List[int]) – The qubit to get the QubitProperties object for. This can be a single integer for 1 qubit or a list of qubits and a list of QubitProperties objects will be returned in the same order

Returns

The QubitProperties object for the specified qubit. If a list of qubits is provided a list will be returned. If properties are missing for a qubit this can be None.

Raises

NotImplementedError – if the backend doesn’t support querying the qubit properties

Return type

QubitProperties | List[QubitProperties]

run

run(run_input, **backend_options)

Run on the backend.

Parameters

Returns

derived from BaseJob

Return type

BasicProviderJob

Additional Information:

backend_options: Is a dict of options for the backend. It may contain

  • “initial_statevector”: vector_like

The “initial_statevector” option specifies a custom initial initial statevector for the simulator to be used instead of the all zero state. This size of this vector must be correct for the number of qubits in run_input parameter.

Example:

backend_options = {
    "initial_statevector": np.array([1, 0, 0, 1j]) / np.sqrt(2),
}

run_experiment

run_experiment(experiment)

Run an experiment (circuit) and return a single experiment result.

Parameters

experiment (QasmQobjExperiment) – experiment from qobj experiments list

Returns

A result dictionary which looks something like:

{
"name": name of this experiment (obtained from qobj.experiment header)
"seed": random seed used for simulation
"shots": number of shots used in the simulation
"data":
    {
    "counts": {'0x9: 5, ...},
    "memory": ['0x9', '0xF', '0x1D', ..., '0x9']
    },
"status": status string for the simulation
"success": boolean
"time_taken": simulation time of this single experiment
}

Raises

BasicProviderError – if an error occurred.

Return type

dict[str, …]

set_options

set_options(**fields)

Set the options fields for the backend

This method is used to update the options of a backend. If you need to change any of the options prior to running just pass in the kwarg with the new value for the options.

Parameters

fields – The fields to update the options

Raises

AttributeError – If the field passed in is not part of the options

Was this page helpful?
Report a bug or request content on GitHub.