Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK Go to the latest version
Important

IBM Quantum Platform is moving and this version will be sunset on July 1. To get started on the new platform, read the migration guide.

Drag

class qiskit.pulse.library.Drag(duration, amp, sigma, beta, angle=None, name=None, limit_amplitude=None)

GitHub

Bases: object

The Derivative Removal by Adiabatic Gate (DRAG) pulse is a standard Gaussian pulse with an additional Gaussian derivative component and lifting applied.

It can be calibrated either to reduce the phase error due to virtual population of the 2|2\rangle state during the pulse or to reduce the frequency spectrum of a standard Gaussian pulse near the 12|1\rangle\leftrightarrow|2\rangle transition, reducing the chance of leakage to the 2|2\rangle state.

g(x)=exp(12(xduration/2)2sigma2)g(x)=A×g(x)g(1)1g(1)f(x)=g(x)×(1+1j×beta×(xduration/2sigma2)),0x<duration\begin{aligned} g(x) &= \exp\Bigl(-\frac12 \frac{(x - \text{duration}/2)^2}{\text{sigma}^2}\Bigr)\\ g'(x) &= \text{A}\times\frac{g(x)-g(-1)}{1-g(-1)}\\ f(x) &= g'(x) \times \Bigl(1 + 1j \times \text{beta} \times \Bigl(-\frac{x - \text{duration}/2}{\text{sigma}^2}\Bigr) \Bigr), \quad 0 \le x < \text{duration} \end{aligned}

where g(x)g(x) is a standard unlifted Gaussian waveform, g(x)g'(x) is the lifted Gaussian waveform, and A=amp×exp(i×angle)\text{A} = \text{amp} \times \exp\left(i\times\text{angle}\right).

References

  1. Gambetta, J. M., Motzoi, F., Merkel, S. T. & Wilhelm, F. K. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A 83, 012308 (2011).

  2. F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm Phys. Rev. Lett. 103, 110501 – Published 8 September 2009.

Create new pulse instance.

Parameters

  • duration – Pulse length in terms of the sampling period dt.
  • amp – The magnitude of the amplitude of the DRAG envelope. Complex amp support is deprecated.
  • sigma – A measure of how wide or narrow the Gaussian peak is; described mathematically in the class docstring.
  • beta – The correction amplitude.
  • angle – The angle of the complex amplitude of the DRAG envelope. Default value 0.
  • name – Display name for this pulse envelope.
  • limit_amplitude – If True, then limit the amplitude of the waveform to 1. The default is True and the amplitude is constrained to 1.

Returns

ScalableSymbolicPulse instance.


Attributes

alias

Default value: 'Drag'

Was this page helpful?
Report a bug or request content on GitHub.