Skip to main contentIBM Quantum Documentation
You are viewing the API reference for an old version of Qiskit SDK. Switch to latest version

MCXGate

qiskit.circuit.library.MCXGate(num_ctrl_qubits=None, label=None, ctrl_state=None, *, duration=None, unit='dt', _base_label=None) GitHub(opens in a new tab)

Bases: ControlledGate

The general, multi-controlled X gate.

Can be applied to a QuantumCircuit with the mcx() method.

Create new MCX gate.


Attributes

base_class

Get the base class of this instruction. This is guaranteed to be in the inheritance tree of self.

The “base class” of an instruction is the lowest class in its inheritance tree that the object should be considered entirely compatible with for _all_ circuit applications. This typically means that the subclass is defined purely to offer some sort of programmer convenience over the base class, and the base class is the “true” class for a behavioural perspective. In particular, you should not override base_class if you are defining a custom version of an instruction that will be implemented differently by hardware, such as an alternative measurement strategy, or a version of a parametrised gate with a particular set of parameters for the purposes of distinguishing it in a Target from the full parametrised gate.

This is often exactly equivalent to type(obj), except in the case of singleton instances of standard-library instructions. These singleton instances are special subclasses of their base class, and this property will return that base. For example:

>>> isinstance(XGate(), XGate)
True
>>> type(XGate()) is XGate
False
>>> XGate().base_class is XGate
True

In general, you should not rely on the precise class of an instruction; within a given circuit, it is expected that Instruction.name should be a more suitable discriminator in most situations.

condition

The classical condition on the instruction.

condition_bits

Get Clbits in condition.

ctrl_state

Return the control state of the gate as a decimal integer.

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl_state, the returned definition is conjugated with X without changing the internal _definition.

duration

Get the duration.

label

Return instruction label

mutable

Is this instance is a mutable unique instance or not.

If this attribute is False the gate instance is a shared singleton and is not mutable.

name

Get name of gate. If the gate has open controls the gate name will become:

<original_name_o<ctrl_state>

where <original_name> is the gate name for the default case of closed control qubits and <ctrl_state> is the integer value of the control state for the gate.

num_ancilla_qubits

The number of ancilla qubits.

num_clbits

Return the number of clbits.

num_ctrl_qubits

Get number of control qubits.

Returns

The number of control qubits for the gate.

Return type

int(opens in a new tab)

num_qubits

Return the number of qubits.

params

Get parameters from base_gate.

Returns

List of gate parameters.

Return type

list(opens in a new tab)

Raises

CircuitError – Controlled gate does not define a base gate

unit

Get the time unit of duration.


Methods

control

control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return a multi-controlled-X gate with more control lines.

Parameters

Returns

controlled version of this gate.

Return type

ControlledGate

get_num_ancilla_qubits

static get_num_ancilla_qubits(num_ctrl_qubits, mode='noancilla')

Get the number of required ancilla qubits without instantiating the class.

This staticmethod might be necessary to check the number of ancillas before creating the gate, or to use the number of ancillas in the initialization.

Return type

int(opens in a new tab)

inverse

inverse()

Invert this gate. The MCX is its own inverse.

Was this page helpful?
Report a bug or request content on GitHub.