LinearAmplitudeFunction
class qiskit.circuit.library.LinearAmplitudeFunction(num_state_qubits, slope, offset, domain, image, rescaling_factor=1, breakpoints=None, name='F')
Bases: QuantumCircuit
A circuit implementing a (piecewise) linear function on qubit amplitudes.
An amplitude function of a function is a mapping
for a function , where is a qubit state.
This circuit implements for piecewise linear functions . In this case, the mapping can be approximately implemented using a Taylor expansion and linearly controlled Pauli-Y rotations, see [1, 2] for more detail. This approximation uses a rescaling_factor
to determine the accuracy of the Taylor expansion.
In general, the function of interest is defined from some interval , the domain
to , the image
, instead of to . Using an affine transformation we can rescale to :
with
If is a piecewise linear function on intervals with slopes and offsets it can be written as
where is an indication function that is 1 if the argument is in the interval and otherwise 0. The breakpoints can be specified by the breakpoints
argument.
References
[1]: Woerner, S., & Egger, D. J. (2018).
Quantum Risk Analysis. arXiv:1806.06893
[2]: Gacon, J., Zoufal, C., & Woerner, S. (2020).
Quantum-Enhanced Simulation-Based Optimization. arXiv:2005.10780
Parameters
- num_state_qubits (int) – The number of qubits used to encode the variable .
- slope (float |list[float]) – The slope of the linear function. Can be a list of slopes if it is a piecewise linear function.
- offset (float |list[float]) – The offset of the linear function. Can be a list of offsets if it is a piecewise linear function.
- domain (tuple[float, float]) – The domain of the function as tuple .
- image (tuple[float, float]) – The image of the function as tuple .
- rescaling_factor (float) – The rescaling factor to adjust the accuracy in the Taylor approximation.
- breakpoints (list[float] | None) – The breakpoints if the function is piecewise linear. If None, the function is not piecewise.
- name (str) – Name of the circuit.
Attributes
ancillas
Returns a list of ancilla bits in the order that the registers were added.
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}
clbits
Returns a list of classical bits in the order that the registers were added.
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the CircuitInstruction
s for each instruction.
Return type
QuantumCircuitData
extension_lib
Default value: 'include "qelib1.inc";'
global_phase
Return the global phase of the current circuit scope in radians.
header
Default value: 'OPENQASM 2.0;'
instances
Default value: 181
layout
Return any associated layout information about the circuit
This attribute contains an optional TranspileLayout
object. This is typically set on the output from transpile()
or PassManager.run()
to retain information about the permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the transpile()
function, an initial layout which permutes the qubits based on the selected physical qubits on the Target
, and a final layout which is an output permutation caused by SwapGate
s inserted during routing.
metadata
The user provided metadata associated with the circuit.
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
num_ancillas
Return the number of ancilla qubits.
num_clbits
Return number of classical bits.
num_parameters
The number of parameter objects in the circuit.
num_qubits
Return number of qubits.
op_start_times
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
Returns
List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data
.
Raises
AttributeError – When circuit is not scheduled.
parameters
The parameters defined in the circuit.
This attribute returns the Parameter
objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector
are still sorted numerically.
Examples
The snippet below shows that insertion order of parameters does not matter.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a ParameterVector
can be used.
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
Returns
The sorted Parameter
objects in the circuit.
prefix
Default value: 'circuit'
qubits
Returns a list of quantum bits in the order that the registers were added.
Methods
post_processing
post_processing(scaled_value)
Map the function value of the approximated to .
Parameters
scaled_value (float) – A function value from the Taylor expansion of .
Returns
The scaled_value
mapped back to the domain of , by first inverting the transformation used for the Taylor approximation and then mapping back from to the original domain.
Return type