Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

ClassicalFunction

class qiskit.circuit.classicalfunction.ClassicalFunction(source, name=None)

GitHub

Bases: ClassicalElement

Represent a classical function and its logic network.

Creates a ClassicalFunction from Python source code in source.

The code should be a single function with types.

Parameters

  • source (str) – Python code with type hints.
  • name (str) – Optional. Default: “classicalfunction”. ClassicalFunction name.

Raises

QiskitError – If source is not a string.


Attributes

args

Returns the classicalfunction arguments

base_class

Get the base class of this instruction. This is guaranteed to be in the inheritance tree of self.

The “base class” of an instruction is the lowest class in its inheritance tree that the object should be considered entirely compatible with for _all_ circuit applications. This typically means that the subclass is defined purely to offer some sort of programmer convenience over the base class, and the base class is the “true” class for a behavioural perspective. In particular, you should not override base_class if you are defining a custom version of an instruction that will be implemented differently by hardware, such as an alternative measurement strategy, or a version of a parametrised gate with a particular set of parameters for the purposes of distinguishing it in a Target from the full parametrised gate.

This is often exactly equivalent to type(obj), except in the case of singleton instances of standard-library instructions. These singleton instances are special subclasses of their base class, and this property will return that base. For example:

>>> isinstance(XGate(), XGate)
True
>>> type(XGate()) is XGate
False
>>> XGate().base_class is XGate
True

In general, you should not rely on the precise class of an instruction; within a given circuit, it is expected that Instruction.name should be a more suitable discriminator in most situations.

condition

The classical condition on the instruction.

condition_bits

Get Clbits in condition.

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

mutable

Is this instance is a mutable unique instance or not.

If this attribute is False the gate instance is a shared singleton and is not mutable.

name

Return the name.

network

Returns the logical network

num_clbits

Return the number of clbits.

num_qubits

Return the number of qubits.

params

return instruction params.

qregs

The list of qregs used by the classicalfunction

scopes

Returns the scope dict

truth_table

Returns (and computes) the truth table

types

Dumps a list of scopes with their variables and types.

Returns

A list of scopes as dicts, where key is the variable name and value is its type.

Return type

list(dict)

unit

Get the time unit of duration.


Methods

add_decomposition

add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble

assemble()

Assemble a QasmQobjInstruction

broadcast_arguments

broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]

Parameters

  • qargs (list) – List of quantum bit arguments.
  • cargs (list) – List of classical bit arguments.

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

Return type

Iterable[tuple[list, list]]

c_if

c_if(classical, val)

Set a classical equality condition on this instruction between the register or cbit classical and value val.

Note

This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.

compile

compile()

Parses and creates the logical circuit

control

control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return controlled version of gate. See ControlledGate for usage.

Parameters

  • num_ctrl_qubits (int) – number of controls to add to gate (default: 1)
  • label (str | None) – optional gate label
  • ctrl_state (int |str | None) – The control state in decimal or as a bitstring (e.g. '111'). If None, use 2**num_ctrl_qubits-1.

Returns

Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancilla qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.

Return type

qiskit.circuit.ControlledGate

Raises

QiskitError – unrecognized mode or invalid ctrl_state

copy

copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

inverse()

Invert this instruction.

If the instruction is composite (i.e. has a definition), then its definition will be recursively inverted.

Special instructions inheriting from Instruction can implement their own inverse (e.g. T and Tdg, Barrier, etc.)

Returns

a fresh instruction for the inverse

Return type

qiskit.circuit.Instruction

Raises

CircuitError – if the instruction is not composite and an inverse has not been implemented for it.

is_parameterized

is_parameterized()

Return True .IFF. instruction is parameterized else False

power

power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

.library.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm

qasm()

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

Deprecated since version 0.25.0

The method qiskit.circuit.instruction.Instruction.qasm() is deprecated as of qiskit-terra 0.25.0. It will be removed no earlier than 3 months after the release date. Correct exporting to OpenQASM 2 is the responsibility of a larger exporter; it cannot safely be done on an object-by-object basis without context. No replacement will be provided, because the premise is wrong.

repeat

repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

reverse_ops

reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Returns

a new instruction with

sub-instructions reversed.

Return type

qiskit.circuit.Instruction

simulate

simulate(bitstring)

Evaluate the expression on a bitstring.

This evaluation is done classically.

Parameters

bitstring (str) – The bitstring for which to evaluate.

Returns

result of the evaluation.

Return type

bool

simulate_all

simulate_all()

Returns a truth table.

Returns

a bitstring with a truth table

Return type

str

soft_compare

soft_compare(other)

Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.

Parameters

other (instruction) – other instruction.

Returns

are self and other equal up to parameter expressions.

Return type

bool

synth

synth(registerless=True, synthesizer=None)

Synthesis the logic network into a QuantumCircuit.

Parameters

  • registerless (bool) – Default True. If False uses the parameter names to create
  • Otherwise (registers with those names.) –
  • register. (creates a circuit with a flat quantum) –
  • synthesizer (Callable[[ClassicalElement], QuantumCircuit] | None) – Optional. If None tweedledum’s pkrm_synth is used.

Returns

A circuit implementing the logic network.

Return type

QuantumCircuit

to_matrix

to_matrix()

Return a Numpy.array for the gate unitary matrix.

Returns

if the Gate subclass has a matrix definition.

Return type

np.ndarray

Raises

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

to_mutable

to_mutable()

Return a mutable copy of this gate.

This method will return a new mutable copy of this gate instance. If a singleton instance is being used this will be a new unique instance that can be mutated. If the instance is already mutable it will be a deepcopy of that instance.

validate_parameter

validate_parameter(parameter)

Gate parameters should be int, float, or ParameterExpression

Was this page helpful?
Report a bug or request content on GitHub.