Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

TNC

class qiskit.algorithms.optimizers.TNC(maxiter=100, disp=False, accuracy=0, ftol=-1, xtol=-1, gtol=-1, tol=None, eps=1e-08, options=None, max_evals_grouped=1, **kwargs)

GitHub

Bases: SciPyOptimizer

Truncated Newton (TNC) optimizer.

TNC uses a truncated Newton algorithm to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the CG method as it wraps a C implementation and allows each variable to be given upper and lower bounds.

Uses scipy.optimize.minimize TNC For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Parameters

  • maxiter (int) – Maximum number of function evaluation.
  • disp (bool) – Set to True to print convergence messages.
  • accuracy (float) – Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0.
  • ftol (float) – Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1.
  • xtol (float) – Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.
  • gtol (float) – Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1.
  • tol (float | None) – Tolerance for termination.
  • eps (float) – Step size used for numerical approximation of the Jacobian.
  • options (dict | None) – A dictionary of solver options.
  • max_evals_grouped (int) – Max number of default gradient evaluations performed simultaneously.
  • kwargs – additional kwargs for scipy.optimize.minimize.

Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings


Methods

get_support_level

get_support_level()

Return support level dictionary

gradient_num_diff

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).

Returns

the gradient computed

Return type

grad

minimize

minimize(fun, x0, jac=None, bounds=None)

Minimize the scalar function.

Parameters

  • fun (Callable[[POINT], float]) – The scalar function to minimize.
  • x0 (POINT) – The initial point for the minimization.
  • jac (Callable[[POINT], POINT] | None) – The gradient of the scalar function fun.
  • bounds (list[tuple[float, float]] | None) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.

Returns

The result of the optimization, containing e.g. the result as attribute x.

Return type

OptimizerResult

print_options()

Print algorithm-specific options.

set_max_evals_grouped

set_max_evals_grouped(limit)

Set max evals grouped

set_options

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

wrap_function

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper

Was this page helpful?
Report a bug or request content on GitHub.