SNOBFIT
class qiskit.algorithms.optimizers.SNOBFIT(maxiter=1000, maxfail=10, maxmp=None, verbose=False)
Bases: Optimizer
Stable Noisy Optimization by Branch and FIT algorithm.
SnobFit is used for the optimization of derivative-free, noisy objective functions providing robust and fast solutions of problems with continuous variables varying within bound.
Uses skquant.opt installed with pip install scikit-quant. For further detail, please refer to https://github.com/scikit-quant/scikit-quant and https://qat4chem.lbl.gov/software.
Parameters
- maxiter (int) – Maximum number of function evaluations.
- maxmp (int) – Maximum number of model points requested for the local fit. Default = 2 * number of parameters + 6 set to this value when None.
- maxfail (int) – Maximum number of failures to improve the solution. Stops the algorithm after maxfail is reached.
- verbose (bool) – Provide verbose (debugging) output.
Raises
- MissingOptionalLibraryError – scikit-quant or SQSnobFit not installed
- QiskitError – If NumPy 1.24.0 or above is installed. See https://github.com/scikit-quant/scikit-quant/issues/24 for more details.
Attributes
bounds_support_level
Returns bounds support level
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
setting
Return setting
settings
Methods
get_support_level
get_support_level()
Returns support level dictionary.
gradient_num_diff
static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).
Returns
the gradient computed
Return type
grad
minimize
minimize(fun, x0, jac=None, bounds=None)
Minimize the scalar function.
Parameters
- fun (Callable[[POINT], float]) – The scalar function to minimize.
- x0 (POINT) – The initial point for the minimization.
- jac (Callable[[POINT], POINT] | None) – The gradient of the scalar function
fun
. - bounds (list[tuple[float, float]] | None) – Bounds for the variables of
fun
. This argument might be ignored if the optimizer does not support bounds.
Returns
The result of the optimization, containing e.g. the result as attribute x
.
Return type
print_options
print_options()
Print algorithm-specific options.
set_max_evals_grouped
set_max_evals_grouped(limit)
Set max evals grouped
set_options
set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
wrap_function
static wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper