Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

GSLS

class qiskit.algorithms.optimizers.GSLS(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50)

GitHub

Bases: Optimizer

Gaussian-smoothed Line Search.

An implementation of the line search algorithm described in https://arxiv.org/pdf/1905.01332.pdf, using gradient approximation based on Gaussian-smoothed samples on a sphere.

Note

This component has some function that is normally random. If you want to reproduce behavior then you should set the random number generator seed in the algorithm_globals (qiskit.utils.algorithm_globals.random_seed = seed).

Parameters

  • maxiter (int) – Maximum number of iterations.
  • max_eval (int) – Maximum number of evaluations.
  • disp (bool) – Set to True to display convergence messages.
  • sampling_radius (float) – Sampling radius to determine gradient estimate.
  • sample_size_factor (int) – The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer.
  • initial_step_size (float) – Initial step size for the descent algorithm.
  • min_step_size (float) – Minimum step size for the descent algorithm.
  • step_size_multiplier (float) – Step size reduction after unsuccessful steps, in the interval (0, 1).
  • armijo_parameter (float) – Armijo parameter for sufficient decrease criterion, in the interval (0, 1).
  • min_gradient_norm (float) – If the gradient norm is below this threshold, the algorithm stops.
  • max_failed_rejection_sampling (int) – Maximum number of attempts to sample points within bounds.

Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings


Methods

get_support_level

get_support_level()

Return support level dictionary.

Returns

A dictionary containing the support levels for different options.

Return type

dict[str, int]

gradient_approximation

gradient_approximation(n, x, x_value, directions, sample_set_x, sample_set_y)

Construct gradient approximation from given sample.

Parameters

  • n (int) – Dimension of the problem.
  • x (ndarray) – Point around which the sample set was constructed.
  • x_value (float) – Objective function value at x.
  • directions (ndarray) – Directions of the sample points wrt the central point x, as a 2D array.
  • sample_set_x (ndarray) – x-coordinates of the sample set, one point per row, as a 2D array.
  • sample_set_y (ndarray) – Objective function values of the points in sample_set_x, as a 1D array.

Returns

Gradient approximation at x, as a 1D array.

Return type

ndarray

gradient_num_diff

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).

Returns

the gradient computed

Return type

grad

ls_optimize

ls_optimize(n, obj_fun, initial_point, var_lb, var_ub)

Run the line search optimization.

Parameters

  • n (int) – Dimension of the problem.
  • obj_fun (Callable[[float |ndarray], float]) – Objective function.
  • initial_point (ndarray) – Initial point.
  • var_lb (ndarray) – Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.
  • var_ub (ndarray) – Vector of upper bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from below.

Returns

Final iterate as a vector, corresponding objective function value, number of evaluations, and norm of the gradient estimate.

Raises

ValueError – If the number of dimensions mismatches the size of the initial point or the length of the lower or upper bound.

Return type

tuple[numpy.ndarray, float, int, float]

minimize

minimize(fun, x0, jac=None, bounds=None)

Minimize the scalar function.

Parameters

  • fun (Callable[[POINT], float]) – The scalar function to minimize.
  • x0 (POINT) – The initial point for the minimization.
  • jac (Callable[[POINT], POINT] | None) – The gradient of the scalar function fun.
  • bounds (list[tuple[float, float]] | None) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.

Returns

The result of the optimization, containing e.g. the result as attribute x.

Return type

OptimizerResult

print_options()

Print algorithm-specific options.

sample_points

sample_points(n, x, num_points)

Sample num_points points around x on the n-sphere of specified radius.

The radius of the sphere is self._options['sampling_radius'].

Parameters

  • n (int) – Dimension of the problem.
  • x (ndarray) – Point around which the sample set is constructed.
  • num_points (int) – Number of points in the sample set.

Returns

A tuple containing the sampling points and the directions.

Return type

tuple[numpy.ndarray, numpy.ndarray]

sample_set

sample_set(n, x, var_lb, var_ub, num_points)

Construct sample set of given size.

Parameters

  • n (int) – Dimension of the problem.
  • x (ndarray) – Point around which the sample set is constructed.
  • var_lb (ndarray) – Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.
  • var_ub (ndarray) – Vector of lower bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from above.
  • num_points (int) – Number of points in the sample set.

Returns

Matrices of (unit-norm) sample directions and sample points, one per row. Both matrices are 2D arrays of floats.

Raises

RuntimeError – If not enough samples could be generated within the bounds.

Return type

tuple[numpy.ndarray, numpy.ndarray]

set_max_evals_grouped

set_max_evals_grouped(limit)

Set max evals grouped

set_options

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

wrap_function

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper

Was this page helpful?
Report a bug or request content on GitHub.