Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

AmplitudeEstimation

class qiskit.algorithms.AmplitudeEstimation(num_eval_qubits, phase_estimation_circuit=None, iqft=None, quantum_instance=None, sampler=None)

GitHub

Bases: AmplitudeEstimator

The Quantum Phase Estimation-based Amplitude Estimation algorithm.

This class implements the original Quantum Amplitude Estimation (QAE) algorithm, introduced by [1]. This canonical version uses quantum phase estimation along with a set of mm additional evaluation qubits to find an estimate a~\tilde{a}, that is restricted to the grid

a~{sin2(πy/2m):y=0,...,2m1}\tilde{a} \in \{\sin^2(\pi y / 2^m) : y = 0, ..., 2^{m-1}\}

More evaluation qubits produce a finer sampling grid, therefore the accuracy of the algorithm increases with mm.

Using a maximum likelihood post processing, this grid constraint can be circumvented. This improved estimator is implemented as well, see [2] Appendix A for more detail.

Note

This class does not support the EstimationProblem.is_good_state property, as for phase estimation-based QAE, the oracle that identifes the good states must be encoded in the Grover operator. To set custom oracles, the EstimationProblem.grover_operator attribute can be set directly.

References

[1]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000).

Quantum Amplitude Amplification and Estimation. arXiv:quant-ph/0005055.

[2]: Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2019).

Iterative Quantum Amplitude Estimation. arXiv:1912.05559.

Deprecated since version 0.24.0

qiskit.algorithms.amplitude_estimators.ae.AmplitudeEstimation.__init__()’s argument quantum_instance is deprecated as of qiskit-terra 0.24.0. It will be removed no earlier than 3 months after the release date. Instead, use the sampler argument. See https://qisk.it/algo_migration for a migration guide.

Parameters

  • num_eval_qubits (int) – The number of evaluation qubits.
  • phase_estimation_circuit (QuantumCircuit | None) – The phase estimation circuit used to run the algorithm. Defaults to the standard phase estimation circuit from the circuit library, qiskit.circuit.library.PhaseEstimation when None.
  • iqft (QuantumCircuit | None) – The inverse quantum Fourier transform component, defaults to using a standard implementation from qiskit.circuit.library.QFT when None.
  • quantum_instance (QuantumInstance |Backend | None) – Deprecated: The backend (or QuantumInstance) to execute the circuits on.
  • sampler (BaseSampler | None) – A sampler primitive to evaluate the circuits.

Raises

ValueError – If the number of evaluation qubits is smaller than 1.


Attributes

quantum_instance

Get the quantum instance.

Deprecated since version 0.24.0

The property qiskit.algorithms.amplitude_estimators.ae.AmplitudeEstimation.quantum_instance is deprecated as of qiskit-terra 0.24.0. It will be removed no earlier than 3 months after the release date. See https://qisk.it/algo_migration for a migration guide.

Returns

The quantum instance used to run this algorithm.

Type

Deprecated

sampler

Get the sampler primitive.

Returns

The sampler primitive to evaluate the circuits.


Methods

compute_confidence_interval

static compute_confidence_interval(result, alpha=0.05, kind='likelihood_ratio')

Compute the (1 - alpha) confidence interval.

Parameters

  • result (AmplitudeEstimationResult) – An amplitude estimation result for which to compute the confidence interval.
  • alpha (float) – Confidence level: compute the (1 - alpha) confidence interval.
  • kind (str) – The method to compute the confidence interval, can be ‘fisher’, ‘observed_fisher’ or ‘likelihood_ratio’ (default)

Returns

The (1 - alpha) confidence interval of the specified kind.

Raises

NotImplementedError – If the confidence interval method kind is not implemented.

Return type

tuple[float, float]

compute_mle

static compute_mle(result, apply_post_processing=False)

Compute the Maximum Likelihood Estimator (MLE).

Parameters

  • result (AmplitudeEstimationResult) – An amplitude estimation result object.
  • apply_post_processing (bool) – If True, apply the post processing to the MLE before returning it.

Returns

The MLE for the provided result object.

Return type

float

construct_circuit

construct_circuit(estimation_problem, measurement=False)

Construct the Amplitude Estimation quantum circuit.

Parameters

  • estimation_problem (EstimationProblem) – The estimation problem for which to construct the QAE circuit.
  • measurement (bool) – Boolean flag to indicate if measurements should be included in the circuit.

Returns

The QuantumCircuit object for the constructed circuit.

Return type

QuantumCircuit

estimate

estimate(estimation_problem)

Run the amplitude estimation algorithm on provided estimation problem.

Parameters

estimation_problem (EstimationProblem) – The estimation problem.

Returns

An amplitude estimation results object.

Raises

  • ValueError – If state_preparation or objective_qubits are not set in the estimation_problem.
  • ValueError – A quantum instance or sampler must be provided.
  • AlgorithmError – Sampler job run error.

Return type

AmplitudeEstimationResult

evaluate_measurements

evaluate_measurements(circuit_results, threshold=1e-06)

Evaluate the results from the circuit simulation.

Given the probabilities from statevector simulation of the QAE circuit, compute the probabilities that the measurements y/gridpoints a are the best estimate.

Parameters

  • circuit_results (dict[str, int] | np.ndarray) – The circuit result from the QAE circuit. Can be either a counts dict or a statevector or a quasi-probabilities dict.
  • threshold (float) – Measurements with probabilities below the threshold are discarded.

Returns

Dictionaries containing the a gridpoints with respective probabilities and

y measurements with respective probabilities, in this order.

Return type

tuple[dict[float, float], dict[int, float]]

Was this page helpful?
Report a bug or request content on GitHub.