Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

XXMinusYYGate

class qiskit.circuit.library.XXMinusYYGate(theta, beta=0, label='(XX-YY)')

GitHub

Bases: Gate

XX-YY interaction gate.

A 2-qubit parameterized XX-YY interaction. Its action is to induce a coherent rotation by some angle between 00|00\rangle and 11|11\rangle.

Circuit Symbol:

     ┌───────────────┐
q_0:0
     │  (XX-YY)(θ,β)
q_1:1
     └───────────────┘

Matrix Representation:

RXXYY(θ,β)q0,q1=RZ1(β)exp(iθ2XXYY2)RZ1(β)=(cos(θ2)00isin(θ2)eiβ01000010isin(θ2)eiβ00cos(θ2))\providecommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{XX-YY}(\theta, \beta) q_0, q_1 = RZ_1(\beta) \cdot \exp\left(-i \frac{\theta}{2} \frac{XX-YY}{2}\right) \cdot RZ_1(-\beta) = \begin{pmatrix} \cos\left(\th\right) & 0 & 0 & -i\sin\left(\th\right)e^{-i\beta} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -i\sin\left(\th\right)e^{i\beta} & 0 & 0 & \cos\left(\th\right) \end{pmatrix}\end{split}
Note

In Qiskit’s convention, higher qubit indices are more significant (little endian convention). In the above example we apply the gate on (q_0, q_1) which results in adding the (optional) phase defined by betabeta on q_1. Instead, if we apply it on (q_1, q_0), the phase is added on q_0. If betabeta is set to its default value of 00, the gate is equivalent in big and little endian.

     ┌───────────────┐
q_0:1
     │  (XX-YY)(θ,β)
q_1:0
     └───────────────┘
RXXYY(θ,β)q1,q0=RZ0(β)exp(iθ2XXYY2)RZ0(β)=(cos(θ2)00isin(θ2)eiβ01000010isin(θ2)eiβ00cos(θ2))\providecommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{XX-YY}(\theta, \beta) q_1, q_0 = RZ_0(\beta) \cdot \exp\left(-i \frac{\theta}{2} \frac{XX-YY}{2}\right) \cdot RZ_0(-\beta) = \begin{pmatrix} \cos\left(\th\right) & 0 & 0 & -i\sin\left(\th\right)e^{i\beta} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -i\sin\left(\th\right)e^{-i\beta} & 0 & 0 & \cos\left(\th\right) \end{pmatrix}\end{split}

Create new XX-YY gate.

Parameters


Attributes

condition_bits

Get Clbits in condition.

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

name

Return the name.

num_clbits

Return the number of clbits.

num_qubits

Return the number of qubits.

params

return instruction params.

unit

Get the time unit of duration.


Methods

inverse

inverse()

Inverse gate.

power

power(exponent)

Raise gate to a power.

Was this page helpful?
Report a bug or request content on GitHub.