Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

qiskit.algorithms.gradients


Gradients

qiskit.algorithms.gradients

Base Classes

BaseEstimatorGradient(estimator[, options, ...])Base class for an EstimatorGradient to compute the gradients of the expectation value.
BaseQGT(estimator[, phase_fix, ...])Base class to computes the Quantum Geometric Tensor (QGT) given a pure, parameterized quantum state.
BaseSamplerGradient(sampler[, options])Base class for a SamplerGradient to compute the gradients of the sampling probability.
EstimatorGradientResult(gradients, metadata, ...)Result of EstimatorGradient.
SamplerGradientResult(gradients, metadata, ...)Result of SamplerGradient.
QGTResult(qgts, derivative_type, metadata, ...)Result of QGT.

Finite Differences

FiniteDiffEstimatorGradient(estimator, epsilon)Compute the gradients of the expectation values by finite difference method [1].
FiniteDiffSamplerGradient(sampler, epsilon)Compute the gradients of the sampling probability by finite difference method [1].

Linear Combination of Unitaries

LinCombEstimatorGradient(estimator[, ...])Compute the gradients of the expectation values.
LinCombSamplerGradient(sampler[, options])Compute the gradients of the sampling probability.
LinCombQGT(estimator[, phase_fix, ...])Computes the Quantum Geometric Tensor (QGT) given a pure, parameterized quantum state.

Parameter Shift Rules

ParamShiftEstimatorGradient(estimator[, ...])Compute the gradients of the expectation values by the parameter shift rule [1].
ParamShiftSamplerGradient(sampler[, options])Compute the gradients of the sampling probability by the parameter shift rule [1].

Quantum Fisher Information

QFIResult(qfis, metadata, options)Result of QFI.
QFI(qgt[, options])Computes the Quantum Fisher Information (QFI) given a pure, parameterized quantum state.

Classical Methods

ReverseEstimatorGradient([derivative_type])Estimator gradients with the classically efficient reverse mode.
ReverseQGT([phase_fix, derivative_type])QGT calculation with the classically efficient reverse mode.

Simultaneous Perturbation Stochastic Approximation

SPSAEstimatorGradient(estimator, epsilon[, ...])Compute the gradients of the expectation value by the Simultaneous Perturbation Stochastic Approximation (SPSA) [1].
SPSASamplerGradient(sampler, epsilon[, ...])Compute the gradients of the sampling probability by the Simultaneous Perturbation Stochastic Approximation (SPSA) [1].
Was this page helpful?
Report a bug or request content on GitHub.