Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK Go to the latest version
Important

IBM Quantum Platform is moving and this version will be sunset on July 1. To get started on the new platform, read the migration guide.

Quantum Information

qiskit.quantum_info


Operators

Operator(data[, input_dims, output_dims])Matrix operator class
Pauli([data, x, z, label])N-qubit Pauli operator.
Clifford(data[, validate, copy])An N-qubit unitary operator from the Clifford group.
ScalarOp([dims, coeff])Scalar identity operator class.
SparsePauliOp(data[, coeffs, ...])Sparse N-qubit operator in a Pauli basis representation.
CNOTDihedral([data, num_qubits, validate])An N-qubit operator from the CNOT-Dihedral group.
PauliList(data)List of N-qubit Pauli operators.
PauliTable(data)DEPRECATED: Symplectic representation of a list Pauli matrices.
StabilizerTable(data[, phase])DEPRECATED: Symplectic representation of a list Stabilizer matrices.
pauli_basis(num_qubits[, weight, pauli_list])Return the ordered PauliTable or PauliList for the n-qubit Pauli basis.

States

Statevector(data[, dims])Statevector class
DensityMatrix(data[, dims])DensityMatrix class
StabilizerState(data[, validate])StabilizerState class.

Channels

Choi(data[, input_dims, output_dims])Choi-matrix representation of a Quantum Channel.
SuperOp(data[, input_dims, output_dims])Superoperator representation of a quantum channel.
Kraus(data[, input_dims, output_dims])Kraus representation of a quantum channel.
Stinespring(data[, input_dims, output_dims])Stinespring representation of a quantum channel.
Chi(data[, input_dims, output_dims])Pauli basis Chi-matrix representation of a quantum channel.
PTM(data[, input_dims, output_dims])Pauli Transfer Matrix (PTM) representation of a Quantum Channel.

Measures

average_gate_fidelity(channel[, target, ...])Return the average gate fidelity of a noisy quantum channel.
process_fidelity(channel[, target, ...])Return the process fidelity of a noisy quantum channel.
gate_error(channel[, target, require_cp, ...])Return the gate error of a noisy quantum channel.
diamond_norm(choi, **kwargs)Return the diamond norm of the input quantum channel object.
state_fidelity(state1, state2[, validate])Return the state fidelity between two quantum states.
purity(state[, validate])Calculate the purity of a quantum state.
concurrence(state)Calculate the concurrence of a quantum state.
entropy(state[, base])Calculate the von-Neumann entropy of a quantum state.
entanglement_of_formation(state)Calculate the entanglement of formation of quantum state.
mutual_information(state[, base])Calculate the mutual information of a bipartite state.

Utility Functions

partial_trace(state, qargs)Return reduced density matrix by tracing out part of quantum state.
shannon_entropy(pvec[, base])Compute the Shannon entropy of a probability vector.
commutator(a, b)Compute commutator of a and b.
anti_commutator(a, b)Compute anti-commutator of a and b.
double_commutator(a, b, c, *[, commutator])Compute symmetric double commutator of a, b and c.

Random

random_statevector(dims[, seed])Generator a random Statevector.
random_density_matrix(dims[, rank, method, seed])Generator a random DensityMatrix.
random_unitary(dims[, seed])Return a random unitary Operator.
random_hermitian(dims[, traceless, seed])Return a random hermitian Operator.
random_pauli(num_qubits[, group_phase, seed])Return a random Pauli.
random_clifford(num_qubits[, seed])Return a random Clifford operator.
random_quantum_channel([input_dims, ...])Return a random CPTP quantum channel.
random_cnotdihedral(num_qubits[, seed])Return a random CNOTDihedral element.
random_pauli_table(num_qubits[, size, seed])Return a random PauliTable.
random_pauli_list(num_qubits[, size, seed, ...])Return a random PauliList.
random_stabilizer_table(num_qubits[, size, seed])DEPRECATED: Return a random StabilizerTable.

Analysis

hellinger_distance(dist_p, dist_q)Computes the Hellinger distance between two counts distributions.
hellinger_fidelity(dist_p, dist_q)Computes the Hellinger fidelity between two counts distributions.
Z2Symmetries(symmetries, sq_paulis, sq_list)The $Z_2$ symmetry converter identifies symmetries from the problem hamiltonian and uses them to provide a tapered - more efficient - representation of operators as Paulis for this problem.

Synthesis

OneQubitEulerDecomposer([basis, use_dag])A class for decomposing 1-qubit unitaries into Euler angle rotations.
TwoQubitBasisDecomposer(gate[, ...])A class for decomposing 2-qubit unitaries into minimal number of uses of a 2-qubit basis gate.
two_qubit_cnot_decompose
Quaternion(data)A class representing a Quaternion.
decompose_clifford(clifford[, method])DEPRECATED: Decompose a Clifford operator into a QuantumCircuit.
XXDecomposer([basis_fidelity, euler_basis, ...])A class for optimal decomposition of 2-qubit unitaries into 2-qubit basis gates of XX type (i.e., each locally equivalent to CAN(alpha, 0, 0) for a possibly varying alpha).
Was this page helpful?
Report a bug or request content on GitHub.