Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

Gradient

class Gradient(grad_method='param_shift', **kwargs)

GitHub

Bases: qiskit.opflow.gradients.gradient_base.GradientBase

Convert an operator expression to the first-order gradient.

Parameters

  • grad_method (Union[str, CircuitGradient]) – The method used to compute the state/probability gradient. Can be either 'param_shift' or 'lin_comb' or 'fin_diff'. Ignored for gradients w.r.t observable parameters.
  • kwargs (dict) – Optional parameters for a CircuitGradient

Raises

ValueError – If method != fin_diff and epsilon is not None.


Methods Defined Here

convert

Gradient.convert(operator, params=None)

Parameters

Return type

OperatorBase

Returns

An operator whose evaluation yields the Gradient.

Raises

  • ValueError – If params contains a parameter not present in operator.
  • ValueError – If operator is not parameterized.

get_gradient

Gradient.get_gradient(operator, params)

Get the gradient for the given operator w.r.t. the given parameters

Parameters

Return type

OperatorBase

Returns

Operator which represents the gradient w.r.t. the given params.

Raises

  • ValueError – If params contains a parameter not present in operator.
  • OpflowError – If the coefficient of the operator could not be reduced to 1.
  • OpflowError – If the differentiation of a combo_fn requires JAX but the package is not installed.
  • TypeError – If the operator does not include a StateFn given by a quantum circuit
  • Exception – Unintended code is reached
  • MissingOptionalLibraryError – jax not installed

Attributes

grad_method

Returns CircuitGradient.

Return type

CircuitGradient

Returns

CircuitGradient.

Was this page helpful?
Report a bug or request content on GitHub.