SingleQubitUnitary
class SingleQubitUnitary(unitary_matrix, mode='ZYZ', up_to_diagonal=False)
Bases: qiskit.circuit.gate.Gate
u = 2*2 unitary (given as a (complex) numpy.ndarray)
mode - determines the used decomposition by providing the rotation axes
up_to_diagonal - the single-qubit unitary is decomposed up to a diagonal matrix,
i.e. a unitary u’ is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u’).
Create a new single qubit gate based on the unitary u
.
Methods
add_decomposition
SingleQubitUnitary.add_decomposition(decomposition)
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
assemble
SingleQubitUnitary.assemble()
Assemble a QasmQobjInstruction
broadcast_arguments
SingleQubitUnitary.broadcast_arguments(qargs, cargs)
Validation and handling of the arguments and its relationship.
For example, cx([q[0],q[1]], q[2])
means cx(q[0], q[2]); cx(q[1], q[2])
. This method yields the arguments in the right grouping. In the given example:
in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
[q[1], q[2]], []
The general broadcasting rules are:
If len(qargs) == 1:
[q[0], q[1]] -> [q[0]],[q[1]]
If len(qargs) == 2:
[[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]] [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]] [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
If len(qargs) >= 3:
[q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
Parameters
- qargs (
List
) – List of quantum bit arguments. - cargs (
List
) – List of classical bit arguments.
Return type
Tuple
[List
, List
]
Returns
A tuple with single arguments.
Raises
CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.
c_if
SingleQubitUnitary.c_if(classical, val)
Set a classical equality condition on this instruction between the register or cbit classical
and value val
.
This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.
control
SingleQubitUnitary.control(num_ctrl_qubits=1, label=None, ctrl_state=None)
Return controlled version of gate. See ControlledGate
for usage.
Parameters
- num_ctrl_qubits (
int
) – number of controls to add to gate (default=1) - label (
Optional
[str
]) – optional gate label - ctrl_state (
Union
[str
,int
,None
]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.
Returns
Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.
Return type
Raises
QiskitError – unrecognized mode or invalid ctrl_state
copy
SingleQubitUnitary.copy(name=None)
Copy of the instruction.
Parameters
name (str) – name to be given to the copied circuit, if None then the name stays the same.
Returns
a copy of the current instruction, with the name
updated if it was provided
Return type
inverse
SingleQubitUnitary.inverse()
Return the inverse.
Note that the resulting gate has an empty params
property.
is_parameterized
SingleQubitUnitary.is_parameterized()
Return True .IFF. instruction is parameterized else False
power
SingleQubitUnitary.power(exponent)
Creates a unitary gate as gate^exponent.
Parameters
exponent (float) – Gate^exponent
Returns
To which to_matrix is self.to_matrix^exponent.
Return type
Raises
CircuitError – If Gate is not unitary
qasm
SingleQubitUnitary.qasm()
Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).
repeat
SingleQubitUnitary.repeat(n)
Creates an instruction with gate repeated n amount of times.
Parameters
n (int) – Number of times to repeat the instruction
Returns
Containing the definition.
Return type
Raises
CircuitError – If n < 1.
reverse_ops
SingleQubitUnitary.reverse_ops()
For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions. It does not invert any gate.
Returns
a new instruction with
sub-instructions reversed.
Return type
soft_compare
SingleQubitUnitary.soft_compare(other)
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
Parameters
other (instruction) – other instruction.
Returns
are self and other equal up to parameter expressions.
Return type
bool
to_matrix
SingleQubitUnitary.to_matrix()
Return a Numpy.array for the gate unitary matrix.
Returns
if the Gate subclass has a matrix definition.
Return type
np.ndarray
Raises
CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.
validate_parameter
SingleQubitUnitary.validate_parameter(parameter)
Single-qubit unitary gate parameter has to be an ndarray.
Attributes
condition_bits
decompositions
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
definition
Return definition in terms of other basic gates.
diag
Returns the diagonal gate D up to which the single-qubit unitary u is implemented.
I.e. u=D.u’, where u’ is the unitary implemented by the found circuit.
duration
Get the duration.
label
Return instruction label
Return type
str
name
Return the name.
num_clbits
Return the number of clbits.
num_qubits
Return the number of qubits.
params
return instruction params.
unit
Get the time unit of duration.