NELDER_MEAD
class NELDER_MEAD(maxiter=None, maxfev=1000, disp=False, xatol=0.0001, tol=None, adaptive=False, options=None, **kwargs)
Bases: qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer
Nelder-Mead optimizer.
The Nelder-Mead algorithm performs unconstrained optimization; it ignores bounds or constraints. It is used to find the minimum or maximum of an objective function in a multidimensional space. It is based on the Simplex algorithm. Nelder-Mead is robust in many applications, especially when the first and second derivatives of the objective function are not known.
However, if the numerical computation of the derivatives can be trusted to be accurate, other algorithms using the first and/or second derivatives information might be preferred to Nelder-Mead for their better performance in the general case, especially in consideration of the fact that the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points.
Uses scipy.optimize.minimize Nelder-Mead. For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
Parameters
- maxiter (
Optional
[int
]) – Maximum allowed number of iterations. If both maxiter and maxfev are set, minimization will stop at the first reached. - maxfev (
int
) – Maximum allowed number of function evaluations. If both maxiter and maxfev are set, minimization will stop at the first reached. - disp (
bool
) – Set to True to print convergence messages. - xatol (
float
) – Absolute error in xopt between iterations that is acceptable for convergence. - tol (
Optional
[float
]) – Tolerance for termination. - adaptive (
bool
) – Adapt algorithm parameters to dimensionality of problem. - options (
Optional
[dict
]) – A dictionary of solver options. - kwargs – additional kwargs for scipy.optimize.minimize.
Methods
get_support_level
NELDER_MEAD.get_support_level()
Return support level dictionary
gradient_num_diff
static NELDER_MEAD.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).
Returns
the gradient computed
Return type
grad
minimize
NELDER_MEAD.minimize(fun, x0, jac=None, bounds=None)
Minimize the scalar function.
Parameters
- fun (
Callable
[[Union
[float
,ndarray
]],float
]) – The scalar function to minimize. - x0 (
Union
[float
,ndarray
]) – The initial point for the minimization. - jac (
Optional
[Callable
[[Union
[float
,ndarray
]],Union
[float
,ndarray
]]]) – The gradient of the scalar functionfun
. - bounds (
Optional
[List
[Tuple
[float
,float
]]]) – Bounds for the variables offun
. This argument might be ignored if the optimizer does not support bounds.
Return type
Returns
The result of the optimization, containing e.g. the result as attribute x
.
print_options
NELDER_MEAD.print_options()
Print algorithm-specific options.
set_max_evals_grouped
NELDER_MEAD.set_max_evals_grouped(limit)
Set max evals grouped
set_options
NELDER_MEAD.set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
wrap_function
static NELDER_MEAD.wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper
Attributes
bounds_support_level
Returns bounds support level
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
setting
Return setting
settings
Return type
Dict
[str
, Any
]